Japanese Journal of Mathematics

, Volume 10, Issue 1, pp 1–41 | Cite as

Kähler–Einstein metrics on Fano manifolds

Special Feature: The Takagi Lectures


This is an expository paper on Kähler metrics of positive scalar curvature. It is for my Takagi Lectures at RIMS in November of 2013. In this paper, I first discuss the Futaki invariants, the K-stability and its relation to the K-energy. Next I will outline my work in 2012 on the existence of Kähler–Einstein metrics on K-stable Fano manifolds. Finally, I will present S. Paul’s work on stability of pairs with some modifications of mine.

Keywords and phrases

Kähler–Einstein metrics manifold Futaki invariant K-stability partial C0-estimate 

Mathematics Subject Classification (2010)

58 53 14 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An90.
    Anderson M.T.: Ricci curvature bounds and Einstein metrics on compact manifolds. J. Amer. Math. Soc., 2, 455–490 (1989)CrossRefMATHMathSciNetGoogle Scholar
  2. ALV09.
    C. Arezzo, A. Della Vedova and G. La Nave, Singularities and K-semistability, Int. Math. Res. Not. IMRN, 2012, 849–869.Google Scholar
  3. Au.
    Aubin T.: Équations du type de Monge–Ampère sur les variétés Kählériennes compactes. C. R. Acad. Sci. Paris Sér. A-B, 283, 119–121 (1976)MATHMathSciNetGoogle Scholar
  4. Au83.
    Aubin T.: Réduction du cas positif de l’équation de Monge–Ampère sur les variétés Kählériennes compactes à la démonstration d’une inégalité. J. Funct. Anal., 57, 143–153 (1984)CrossRefMATHMathSciNetGoogle Scholar
  5. BM86.
    S. Bando and T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, In: Algebraic Geometry, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, pp. 11–40.Google Scholar
  6. Be12.
    R.J. Berman, K-polystability of Q-Fano varieties admitting Kähler–Einstein metrics, preprint, arXiv:1205.6214.
  7. Be11.
    Berman R.J.: A thermodynamical formalism for Monge–Ampère equations, Moser–Trudinger inequalities and Kähler–Einstein metrics. Adv. Math., 248, 1254–1297 (2013)CrossRefMATHMathSciNetGoogle Scholar
  8. BB12.
    R.J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi, Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, preprint, arXiv:1111.7158.
  9. Br11.
    S. Brendle, Ricci flat Kähler metrics with edge singularities, preprint, arXiv:1103.5454.
  10. CC95.
    Cheeger J., Colding T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. of Math. 144(2), 189–237 (1996)CrossRefMATHMathSciNetGoogle Scholar
  11. CCT95.
    Cheeger J., Colding T.H., Tian G.: On the singularities of spaces with bounded Ricci curvature. Geom. Funct. Anal., 12, 873–914 (2002)CrossRefMATHMathSciNetGoogle Scholar
  12. CDS.
    X.X. Chen, S. Donaldson and S. Sun, Kähler–Einstein metrics on Fano manifolds, I, II, III, preprints, arXiv:1211.4566, arXiv:1212.4714, arXiv:1302.0282.
  13. DT92.
    Ding W.Y., Tian G.: Kähler–Einstein metrics and the generalized Futaki invariants. Invent. Math., 110, 315–335 (1992)CrossRefMATHMathSciNetGoogle Scholar
  14. Do02.
    Donaldson S.K.: Scalar curvature and stability of toric varieties. J. Differential Geom., 62, 289–349 (2002)MATHMathSciNetGoogle Scholar
  15. Do10.
    S.K. Donaldson, Stability, birational transformations and the Kähler–Einstein problem, preprint, arXiv:1007.4220.
  16. Do11.
    S.K. Donaldson, Kähler metrics with cone singularities along a divisor, preprint, arXiv:1102.1196.
  17. DS12.
    S.K. Donaldson and S. Sun, Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, preprint, arXiv:1206.2609.
  18. Fu83.
    Futaki A.: An obstruction to the existence of Einstein–Kähler metrics. Invent. Math., 73, 437–443 (1983)CrossRefMATHMathSciNetGoogle Scholar
  19. JMR11.
    T.D. Jeffres, R. Mazzeo and Y.A. Rubinstein, Kähler–Einstein metrics with edge singularities, preprint, arXiv:1105.5216.
  20. Ji13.
    W. Jiang, Bergman kernel along the Kähler Ricci flow and Tian’s conjecture, prerpint, arXiv:1311.0428.
  21. Li11.
    C. Li, Remarks on logarithmic K-stability, preprint, arXiv:1104.0428.
  22. Li12.
    C. Li, Kähler–Einstein metrics and K-stability, Ph. D. thesis, Princeton Univ., 2012.Google Scholar
  23. LS12.
    C. Li and S. Sun, Conic Kähler–Einstein metrics revisited, preprint, arXiv:1207.5011.
  24. LX11.
    C. Li and C. Xu, Special test configurations and K-stability of Fano varieties, preprint, arXiv:1111.5398.
  25. Ma86.
    Mabuchi T.: K-energy maps integrating Futaki invariants. Tohoku Math. J. 38(2), 575–593 (1986)CrossRefMATHMathSciNetGoogle Scholar
  26. Pa04.
    Paul S.T.: Geometric analysis of Chow Mumford stability. Adv. Math., 182, 333–356 (2004)CrossRefMATHMathSciNetGoogle Scholar
  27. Pa08.
    Paul S.T.: Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics. Ann. of Math. 175(2), 255–296 (2012)CrossRefMATHMathSciNetGoogle Scholar
  28. Pa12a.
    S.T. Paul, CM stability of projective varieties, preprint, arXiv:1206.4923.
  29. Pa12b.
    S.T. Paul, A numerical criterion for K-energy maps of algebraic manifolds, preprint, arXiv:1210.0924v1.
  30. Pa13.
    S.T. Paul, Stable pairs and coercive estimates for the Mabuchi functional, preprint, arXiv:1308.4377.
  31. PT04.
    Paul S.T., Tian G.: Analysis of geometric stability. Int. Math. Res. Not., 2004, 2555–2591 (2004)CrossRefMATHMathSciNetGoogle Scholar
  32. PT06.
    Paul S.T., Tian G.: CM stability and the generalized Futaki invariant II. Astérisque, 328, 339–354 (2009)MathSciNetGoogle Scholar
  33. Pe02.
    G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint, arXiv:math/0211159.
  34. St09.
    Stoppa J.: K-stability of constant scalar curvature Kähler manifolds. Adv. Math., 221, 1397–1408 (2009)CrossRefMATHMathSciNetGoogle Scholar
  35. Sz13.
    G. Székelyhidi, The partial C 0-estimate along the continuity method, preprint, arXiv:1310.8471.
  36. Ti89.
    Tian G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math., 101, 101–172 (1990)CrossRefMATHMathSciNetGoogle Scholar
  37. Ti90.
    G. Tian, Kähler–Einstein metrics on algebraic manifolds, In: Proceedings of the International Congress of Mathematicians, Vol. I, II, Kyoto, 1990, Math. Soc. Japan, Tokyo, 1991, pp. 587–598.Google Scholar
  38. Ti94.
    G. Tian, Kähler–Einstein metrics on algebraic manifolds, In: Transcendental Methods in Algebraic Geometry, Cetraro, 1994, Lecture Notes in Math., 1646, Springer-Verlag, 1996, pp. 143–185.Google Scholar
  39. Ti97.
    Tian G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math., 130, 1–37 (1997)CrossRefMATHMathSciNetGoogle Scholar
  40. Ti98.
    Tian G.: Canonical Metrics in Kähler Geometry. Lectures in Mathematics ETH Zürich, Birkhäuser-Verlag (2000)CrossRefMATHGoogle Scholar
  41. Ti98.
    G. Tian, Existence of Einstein metrics on Fano manifolds, In: Metric and Differential Geomtry, Proceeding of the 2008 conference celebrating J. Cheeger’s 65th birthday, (eds. X. Dai and X. Rong), Progr. Math., 297, Birkhäuser-Verlag, 2012.Google Scholar
  42. Ti12.
    G. Tian, K-stability and Kähler–Einstein metrics, preprint, arXiv:1211.4669.
  43. Ti13.
    Tian G.: Partial C 0-estimate for Kähler–Einstein metrics. Commun. Math. Stat., 1, 105–113 (2013)CrossRefMATHMathSciNetGoogle Scholar
  44. Ti13-2.
    G. Tian, Stability of pairs, preprint, arXiv:1310.5544.
  45. TW11.
    G. Tian and B. Wang, On the structure of almost Einstein manifolds, preprint, arXiv:1202.2912.
  46. TZ13.
    G. Tian and Z. Zhang, Regularity of Kähler–Ricci flows on Fano manifolds, preprint, arXiv:1310.5897.
  47. Ya.
    Yau S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Comm. Pure Appl. Math., 31, 339–441 (1978)CrossRefMATHGoogle Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2014

Authors and Affiliations

  1. 1.Beijing International Center for Mathematical ResearchPeking UniversityBeijingP.R. China
  2. 2.Princeton UniversityPrincetonUSA

Personalised recommendations