Japanese Journal of Mathematics

, Volume 9, Issue 1, pp 69–97 | Cite as

Apollonian circle packings: dynamics and number theory

Article

Abstract

We give an overview of various counting problems for Apollonian circle packings, which turn out to be related to problems in dynamics and number theory for thin groups. This survey article is an expanded version of my lecture notes prepared for the 13th Takagi Lectures given at RIMS, Kyoto in the fall of 2013.

Keywords and phrases

Apollonian circle packing expander thin group geometrically finite group equidistribution 

Mathematics Subject Classification (2010)

11N45 37F35 22E40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babillot M.: On the mixing property for hyperbolic systems. Israel J. Math. 129, 61–76 (2002)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    J. Bourgain, Integral Apollonian circle packings and prime curvatures, preprint, arXiv:1105.5127.
  3. 3.
    J. Bourgain, Some Diophantine applications of the theory of group expansion, In: Thin Groups and Superstrong Approximation, (eds. E. Breulliard and H. Oh), Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press, Cambridge, to appear (2014).Google Scholar
  4. 4.
    Bourgain J., Fuchs E.: A proof of the positive density conjecture for integer Apollonian packings. J. Amer. Math. Soc. 24, 945–967 (2011)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bourgain J., Gamburd A., Sarnak P.: Affine linear sieve, expanders, and sum-product. Invent. Math. 179, 559–644 (2010)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bourgain J., Gamburd A., Sarnak P.: Generalization of Selberg’s 3/16 theorem and affine sieve. Acta Math. 207, 255–290 (2011)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    J. Bourgain and A. Kontorovich, On the local-global conjecture for integral Apollonian gaskets, preprint, arXiv:1205.4416; Invent. Math., to appear.
  8. 8.
    Boyd D.W.: The sequence of radii of the Apollonian packing. Math. Comp. 39, 249–254 (1982)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Breuillard E., Green B., Tao T.: Approximate subgroups of linear groups. Geom. Funct. Anal. 21, 774–819 (2011)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Burger M.: Horocycle flow on geometrically finite surfaces. Duke Math. J. 61, 779–803 (1990)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Burger M., Sarnak P.: Ramanujan duals. II. Invent. Math. 106, 1–11 (1991)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Chen J.R.: On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16, 157–176 (1973)MATHMathSciNetGoogle Scholar
  13. 13.
    Clozel L.: Démonstration de la conjecture \({\tau}\) . Invent. Math. 151, 297–328 (2003)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Coxeter H.S.M.: The problem of Apollonius. Amer. Math. Monthly 75, 5–15 (1968)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Duke W., Rudnick Z., Sarnak P.: Density of integer points on affine homogeneous varieties. Duke Math. J. 71, 143–179 (1993)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Eriksson N., Lagarias J.C.: Apollonian circle packings: number theory. II. Spherical and hyperbolic packings. Ramanujan J. 14, 437–469 (2007)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Eskin A., McMullen C.T.: Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71, 181–209 (1993)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Flaminio L., Spatzier R.J.: Geometrically finite groups, Patterson–Sullivan measures and Ratner’s theorem. Invent. Math. 99, 601–626 (1990)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Fuchs E.: Strong approximation in the Apollonian group. J. Number Theory 131, 2282–2302 (2011)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Fuchs E.: Counting problems in Apollonian packings. Bull. Amer. Math. Soc. (N.S.) 50, 229–266 (2013)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Fuchs E., Sanden K.: Some experiments with integral Apollonian circle packings. Exp. Math. 20, 380–399 (2011)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Gorodnik A., Nevo A.: Lifting, restricting and sifting integral points on affine homogeneous varieties. Compos. Math. 148, 1695–1716 (2012)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks and C.H. Yan, Apollonian circle packings: number theory, J. Number Theory, 100 (2003), 1–45.Google Scholar
  24. 24.
    R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks and C.H. Yan, Apollonian circle packings: geometry and group theory. I. The Apollonian group, Discrete Comput. Geom., 34 (2005), 547–585.Google Scholar
  25. 25.
    B. Green, Approximate groups and their applications: work of Bourgain, Gamburd, Helfgott and Sarnak, Current Events Bulletin of the AMS, 2010, preprint, arXiv:0911.3354.
  26. 26.
    H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.Google Scholar
  27. 27.
    H.A. Helfgott, Growth and generation in SL2(\({\mathbb{Z}/ p\mathbb{Z}}\)), Ann. of Math. (2), 167 (2008), 601–623.Google Scholar
  28. 28.
    Howe R.E., Moore C.C.: Asymptotic properties of unitary representations. J. Funct. Anal. 32, 72–96 (1979)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Kazhdan D.A.: Connection of the dual space of a group with the structure of its close subgroups. Funct. Anal. Appl. 1, 63–65 (1967)CrossRefMATHGoogle Scholar
  30. 30.
    Kontorovich A., Oh H.: Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. J. Amer. Math. Soc. 24, 603–648 (2011)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Lax P.D., Phillips R.S.: The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal. 46, 280–350 (1982)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Lee M., Oh H.: Effective circle count for Apollonian packings and closed horospheres. Geom. Funct. Anal. 23, 580–621 (2013)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Margulis G.A.: Explicit constructions of expanders. Problems Inform. Transmission 9, 325–332 (1973)MathSciNetGoogle Scholar
  34. 34.
    G.A. Margulis, On Some Aspects of the Theory of Anosov Systems. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows. Translated from the Russian by Valentina Vladimirovna Szulikowska, Springer Monogr. Math., Springer-Verlag, 2004.Google Scholar
  35. 35.
    C.R. Matthews, L.N. Vaserstein and B. Weisfeiler, Congruence properties of Zariski-dense subgroups. I, Proc. London Math. Soc. (3), 48 (1984), 514–532.Google Scholar
  36. 36.
    P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  37. 37.
    Mauldin R.D., Urbański M.: Dimension and measures for a curvilinear Sierpinski gasket or Apollonian packings. Adv. Math. 136, 26–38 (1998)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    McMullen C.T.: Hausdorff dimension and conformal dynamics. III. Computation of dimension. Amer. J. Math. 120, 691–721 (1998)MATHMathSciNetGoogle Scholar
  39. 39.
    A. Mohammadi and H. Oh, Matrix coefficients, counting and primes for geometrically finite groups, preprint, arXiv:1208.4139; J. Eur. Math. Soc. (JEMS), to appear.
  40. 40.
    D. Mumford, C. Series and D. Wright, Indra’s Pearls, Cambridge Univ. Press, New York, 2002.Google Scholar
  41. 41.
    Nevo A., Sarnak P.: Prime and almost prime integral points on principal homogeneous spaces. Acta Math. 205, 361–402 (2010)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    H. Oh, Dynamics on geometrically finite hyperbolic manifolds with applications to Apollonian circle packings and beyond, In: Proc. of International Congress of Mathematicians, Hyderabad, 2010, Vol. III, Hindustan Book Agency, New Delhi, 2010, pp. 1308–1331.Google Scholar
  43. 43.
    H. Oh, Harmonic analysis, ergodic theory and counting for thin groups, In: Thin Groups and Superstrong Approximation, (eds. E. Breulliard and H. Oh), Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press, Cambridge, to appear (2014).Google Scholar
  44. 44.
    Oh H., Shah N.A.: The asymptotic distribution of circles in the orbits of Kleinian groups. Invent. Math. 187, 1–35 (2012)CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Oh H., Shah N.A.: Equidistribution and counting for orbits of geometrically finite hyperbolic groups. J. Amer. Math. Soc. 26, 511–562 (2013)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    S.J. Patterson, The limit set of a Fuchsian group, Acta Math., 136 (1976), 241–273.Google Scholar
  47. 47.
    L. Pyber and E. Szabó, Growth in finite simple groups of Lie type of bounded rank, preprint, arXiv:1005.1858.
  48. 48.
    J.G. Ratcliffe, Foundations of Hyperbolic Manifolds, Grad. Texts in Math., 149, Springer-Verlag, 1994.Google Scholar
  49. 49.
    T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.), 95, Math. Soc. France, 2003.Google Scholar
  50. 50.
    Rudolph D.: Ergodic behaviour of Sullivan’s geometric measure on a geometrically finite hyperbolic manifold. Ergodic Theory Dynam. Systems 2, 491–512 (1982)MATHMathSciNetGoogle Scholar
  51. 51.
    Salehi Golsefidy A., Sarnak P.: The affine sieve. J. Amer. Math. Soc. 26, 1085–1105 (2013)CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Salehi Golsefidy A., Varjú P.: Expansion in perfect groups. Geom. Funct. Anal. 22, 1832–1891 (2012)CrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Sarnak P.: Integral Apollonian packings. Amer. Math. Monthly 118, 291–306 (2011)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    P. Sarnak, Growth in linear groups, In: Thin Groups and Superstrong Approximation, (eds. E. Breulliard and H. Oh), Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press, Cambridge, to appear (2014).Google Scholar
  55. 55.
    Stratmann B., Urbański M.: The box-counting dimension for geometrically finite Kleinian groups. Fund. Math. 149, 83–93 (1996)MATHMathSciNetGoogle Scholar
  56. 56.
    Sullivan D.: The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Études Sci. Publ. Math. 50, 171–202 (1979)CrossRefMATHGoogle Scholar
  57. 57.
    Sullivan D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math. 153, 259–277 (1984)CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    I. Vinogradov, Effective bisector estimate with applications to Apollonian circle packings, preprint, arXiv:1204.5498.
  59. 59.
    D. Winter, Mixing of frame flow for rank one locally symmetric spaces and measure classification, preprint, 2013.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2014

Authors and Affiliations

  1. 1.Mathematics DepartmentYale UniversityNew HavenUSA
  2. 2.Korea Institute for Advanced StudySeoulRepublic of Korea

Personalised recommendations