Japanese Journal of Mathematics

, Volume 9, Issue 2, pp 99–136 | Cite as

Geometric structure in smooth dual and local Langlands conjecture

  • Anne-Marie Aubert
  • Paul Baum
  • Roger Plymen
  • Maarten Solleveld
Special Feature: The Takagi Lectures

Abstract

This expository paper first reviews some basic facts about p-adic fields, reductive p-adic groups, and the local Langlands conjecture. If G is a reductive p-adic group, then the smooth dual of G is the set of equivalence classes of smooth irreducible representations of G. The representations are on vector spaces over the complex numbers. In a canonical way, the smooth dual is the disjoint union of subsets known as the Bernstein components. According to a conjecture due to ABPS (Aubert–Baum–Plymen–Solleveld), each Bernstein component has a geometric structure given by an appropriate extended quotient. The paper states this ABPS conjecture and then indicates evidence for the conjecture, and its connection to the local Langlands conjecture.

Keywords and phrases

reductive p-adic group local Langlands conjecture Bernstein components 

Mathematics Subject Classification (2010)

11F85 22E50 11R39 20G05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur J.: A note on L-packets. Pure Appl. Math. Q. 2, 199–217 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    J. Arthur, The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, Amer. Math. Soc. Colloq. Publ., 61, Amer. Math. Soc., Providence, RI, 2013.Google Scholar
  3. 3.
    A.-M. Aubert, P. Baum and R.J. Plymen, The Hecke algebra of a reductive p-adic group: a geometric conjecture, In: Noncommutative Geometry and Number Theory, (eds. C. Consani and M. Marcolli), Aspects Math., 37, Vieweg Verlag, Wiesbaden, 2006, pp. 1–34.Google Scholar
  4. 4.
    Aubert A.-M, Baum P, Plymen R.J: Geometric structure in the representation theory of p-adic groups. C. R. Math. Acad. Sci. Paris 345, 573–578 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aubert A.-M, Baum P, Plymen R.J: Geometric structure in the principal series of the p-adic group G 2. Represent. Theory 15, 126–169 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    A.-M. Aubert, P. Baum and R.J. Plymen, Geometric structure in the representation theory of reductive p-adic groups. II, In: Harmonic Analysis on Reductive p-adic Groups, (eds. R.S. Doran, P.J. Sally, Jr. and L. Spice), Contemp. Math., 543, Amer. Math. Soc., Providence, RI, 2011, pp. 71–90.Google Scholar
  7. 7.
    A.-M. Aubert, P. Baum, R.J. Plymen and M. Solleveld, Geometric structure and the local Langlands conjecture, preprint, arXiv:1211.0180v2.
  8. 8.
    A.-M. Aubert, P. Baum, R.J. Plymen and M. Solleveld, The local Langlands correspondence for inner forms of SLn, preprint, arXiv:1305.2638.
  9. 9.
    A.-M. Aubert, P. Baum, R.J. Plymen and M. Solleveld, On the local Langlands correspondence for non-tempered representations, Münster J. Math., to appear.Google Scholar
  10. 10.
    Baum P, Nistor V: Periodic cyclic homology of Iwahori–Hecke algebras. C. R. Acad. Sci. Paris Sér. I Math. 332, 783–788 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Baum P, Nistor V: Periodic cyclic homology of Iwahori–Hecke algebras.. K-Theory 27, 329–357 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    J.N. Bernstein, Le centre de Bernstein. Edited by P. Deligne, In: Representations of Reductive Groups Over a Local Field, Travaux en Cours, Hermann, Paris, 1984, pp. 1–32.Google Scholar
  13. 13.
    J.N. Bernstein and S. Gelbart, An Introduction to the Langlands Program, Birkhäuser, 2003.Google Scholar
  14. 14.
    J.N. Bernstein and K.E. Rumelhart, Representations of p-adic Groups, Harvard Mathematics Department Lecture Notes, 1993.Google Scholar
  15. 15.
    A. Borel, Automorphic L-functions, In: Automorphic Forms, Representations and L-Functions, Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, pp. 27–61.Google Scholar
  16. 16.
    J. Dixmier, C*-Algebras, North-Holland, 1977.Google Scholar
  17. 17.
    M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. of Math. Stud., 151, Princeton Univ. Press, Princeton, NJ, 2001.Google Scholar
  18. 18.
    Henniart G.: Une preuve simple de conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math. 139, 439–455 (2000)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    K. Hiraga and H. Saito, On L-packets for Inner Forms of SLn, Mem. Amer. Math. Soc., 215, Amer. Math. Soc., Providence, RI, 2012.Google Scholar
  20. 20.
    K. Iwasawa, Local Class Field Theory, Oxford Sci. Publ., Oxford Math. Monogr., Clarendon Press, Oxford Univ. Press, New York, 1986.Google Scholar
  21. 21.
    Kato S.-I.: A realization of irreducible representations of affine Weyl groups. Nederl. Akad. Wetensch. Indag. Math. 45, 193–201 (1983)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kazhdan D, Lusztig G: Proof of the Deligne–Langlands conjecture for Hecke algebras. Invent. Math. 87, 153–215 (1987)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kazhdan D, Nistor V, Schneider P: Hochschild and cyclic homology of finite type algebras. Selecta Math. (N.S.) 4, 321–359 (1998)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    R.P. Langlands, Problems in the theory of automorphic forms, In: Lectures in Modern Analysis and Applications. III, Lecture Notes in Math., 170, Springer-Verlag, 1970, pp. 18–61.Google Scholar
  25. 25.
    Lusztig G.: Some examples of square integrable representations of semisimple p-adic groups. Trans. Amer. Math. Soc. 277, 623–653 (1983)MathSciNetMATHGoogle Scholar
  26. 26.
    Lusztig G.: Cells in affine Weyl groups. III. J. Fac. Sci. Univ. Tokyo Sect IA Math. 34, 223–243 (1987)MathSciNetMATHGoogle Scholar
  27. 27.
    Lusztig G.: Cells in affine Weyl groups. IV. J. Fac. Sci. Univ. Tokyo Sect IA Math. 36, 297–328 (1989)MathSciNetMATHGoogle Scholar
  28. 28.
    Lusztig G.: Representations of affine Hecke algebras. Astérisque. 171-172, 73–84 (1989)MathSciNetGoogle Scholar
  29. 29.
    C.P. Mok, Endoscopic classification of representations of quasi-split unitary groups, preprint, arXiv:1206.0882; Mem. Amer. Math. Soc., to appear.
  30. 30.
    Reeder M.: Isogenies of Hecke algebras and a Langlands correspondence for ramified principal series representations. Represent. Theory 6, 101–126 (2002)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    D. Renard, Représentations des groupes réductifs p-adiques, Cours Spec., 17, Soc. Math. France, Paris, 2010.Google Scholar
  32. 32.
    Scholze P.: The local Langlands correspondence for GLn over p-adic fields. Invent. Math. 192, 663–715 (2013)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Solleveld M.: On the classification of irreducible representations of affine Hecke algebras with unequal parameters. Represent. Theory 16, 1–87 (2012)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    D.A. Vogan, Jr., The local Langlands conjecture, In: Representation Theory of Groups and Algebras, Contemp. Math., 145, Amer. Math. Soc., Providence, RI, 1993, pp. 305–379.Google Scholar
  35. 35.
    Zelevinsky A.V.: Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n). Ann. Sci. École Norm. Sup. 13(4), 165–210 (1980)MathSciNetMATHGoogle Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2014

Authors and Affiliations

  • Anne-Marie Aubert
    • 1
  • Paul Baum
    • 2
  • Roger Plymen
    • 3
    • 4
  • Maarten Solleveld
    • 5
  1. 1.Institut de Mathématiques de Jussieu – Paris Rive Gauche, U.M.R. 7586 du C.N.R.S., U.P.M.C.ParisFrance
  2. 2.Mathematics DepartmentPennsylvania State UniversityUniversity ParkUSA
  3. 3.School of MathematicsSouthampton UniversitySouthamptonEngland
  4. 4.School of MathematicsManchester UniversityManchesterEngland
  5. 5.Radboud Universiteit NijmegenNijmegenthe Netherlands

Personalised recommendations