Japanese Journal of Mathematics

, Volume 8, Issue 2, pp 233–347 | Cite as

Non-local Poisson structures and applications to the theory of integrable systems

Article

Abstract

We develop a rigorous theory of non-local Poisson structures, built on the notion of a non-local Poisson vertex algebra. As an application, we find conditions that guarantee applicability of the Lenard–Magri scheme of integrability to a pair of compatible non-local Poisson structures. We apply this scheme to several such pairs, proving thereby integrability of various evolution equations, as well as hyperbolic equations.

Keywords and phrases

non-local Poisson vertex algebra non-local Poisson structure rational matrix pseudo-differential operators Lenard–Magri scheme of integrability bi-Hamiltonian integrable hierarchies 

Mathematics Subject Classification (2010)

37K10 (primary) 35Q53 17B80 17B69 37K30 17B63 (secondary) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Art57.
    E. Artin, Geometric Algebra, Interscience Publishers, Inc., New York-London, 1957.Google Scholar
  2. BDSK09.
    Barakat A., De Sole A., Kac V.G.: Poisson vertex algebras in the theory of Hamiltonian equations. Jpn. J. Math., 4, 141–252 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. Bla98.
    M. Błaszak, Multi-Hamiltonian theory of dynamical systems, Texts Monogr. Phys., Springer-Verlag, 1998.Google Scholar
  4. CDSK12a.
    Carpentier S., De Sole A., Kac V.G.: Some algebraic properties of differential operators. J. Math. Phys., 53, 063501 (2012)MathSciNetCrossRefGoogle Scholar
  5. CDSK12b.
    S. Carpentier, A. De Sole and V.G. Kac, Rational matrix pseudodifferential operators, Selecta Math. (N.S.), to appear (2013), arXiv:1206.4165.Google Scholar
  6. CDSK12c.
    S. Carpentier, A. De Sole and V.G. Kac, Some remarks on non-commutative principal ideal rings, C. R. Math. Acad. Sci. Paris, 351 (2013), 5–8.Google Scholar
  7. CLL79.
    Chen H.H., Lee Y.C., Liu C.S.: Integrability of nonlinear Hamiltonian systems by inverse scattering method. Special issue on solitons in physics. Phys. Scripta, 20, 490–492 (1979)MathSciNetCrossRefMATHGoogle Scholar
  8. CC87.
    Clarkson P.A., Cosgrove C.M.: Painlevé analysis of the nonlinear Schrödinger family of equations. J. Phys. A, 20, 2003–2024 (1987)MathSciNetCrossRefMATHGoogle Scholar
  9. DSK06.
    De Sole A., Kac V.G.: Finite vs affine W-algebras. Jpn. J. Math., 1, 137–261 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. DSK09.
    De Sole A., Kac V.G.: Lie conformal algebra cohomology and the variational complex. Comm. Math. Phys., 292, 667–719 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. DSK11.
    De Sole A., Kac V.G.: The variational Poisson cohomolgy. Jpn. J. Math., 8, 1–145 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. DSKW10.
    De Sole A., Kac V.G., Wakimoto M.: On classification of Poisson vertex algebras. Transform. Groups, 15, 883–907 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. Dic03.
    L.A. Dickey, Soliton Equations and Hamiltonian Systems. Second ed., Adv. Ser. Math. Phys., 26, World Sci. Publ., 2003.Google Scholar
  14. Die43.
    Dieudonné J.: Les déterminants sur un corps non commutatif. Bull. Soc. Math. France, 71, 27–45 (1943)MathSciNetMATHGoogle Scholar
  15. Dor93.
    I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Nonlinear Sci. Theory Appl., John Wiley & Sons, 1993.Google Scholar
  16. DN89.
    B.A. Dubrovin and S.P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. (Russian), Uspekhi Mat. Nauk, 44 (1989), no. 6 (270), 29–98; translation in Russian Math. Surveys, 44 (1989), no. 6, 35–124.Google Scholar
  17. Fok95.
    Fokas A.S.: On a class of physically important integrable equations. Phys. D, 87, 145–150 (1995)MathSciNetCrossRefMATHGoogle Scholar
  18. Fr98.
    E. Frenkel, Five lectures on soliton equations, In: Integrable Systems, (eds. C.-L. Terng and K.K. Uhlenbeck), Surv. Differ. Geom., 4, Int. Press, Boston, MA, 1998, pp. 131–180.Google Scholar
  19. FF81.
    Fuchssteiner B., Fokas A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D, 4, 47–66 (1981)MathSciNetCrossRefMATHGoogle Scholar
  20. GD80.
    I.M. Gelfand and I. Dorfman, Schouten bracket and Hamiltonian operators, Funktsional. Anal. i Prilozhen., 14 (1980), no. 3, 71–74.Google Scholar
  21. KN78.
    Kaup D.J., Newell A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Mathematical Phys., 19, 798–801 (1978)MathSciNetCrossRefMATHGoogle Scholar
  22. Mag78.
    Magri F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys., 19, 1156–1162 (1978)MathSciNetCrossRefMATHGoogle Scholar
  23. Mag80.
    F. Magri, A geometrical approach to the nonlinear solvable equations, In: Nonlinear Evolution Equations and Dynamical Systems, Lecture Notes in Phys., 120, Springer-Verlag, 1980, pp. 233–263.Google Scholar
  24. MN01.
    Maltsev A.Ya., Novikov S.P.: On the local systems Hamiltonian in the weakly non-local Poisson brackets. Phys. D, 156, 53–80 (2001)MathSciNetCrossRefMATHGoogle Scholar
  25. MS12.
    A.G. Meshkov and V.V. Sokolov, Integrable evolution equations with constant separant, Ufa Mathematical Journal, 4 (2012), no. 3, 104–153.Google Scholar
  26. MSS90.
    A.V. Mikhaĭlov, A.B. Shabat and V.V. Sokolov, The symmetry approach to the classification of integrable equations, In: Integrability and Kinetic Equations for Solitons, Naukova Dumka, Kiev, 1990, pp. 213–279.Google Scholar
  27. Olv93.
    P.J. Olver, Applications of Lie Groups to Differential Equations. Second ed., Grad. Texts in Math., 107, Springer-Verlag, 1993.Google Scholar
  28. SS04.
    Sakovich A., Sakovich S.: The short pulse equation is integrable. J. Phys. Soc. Japan, 74, 239–241 (2005)MathSciNetCrossRefMATHGoogle Scholar
  29. SW01.
    Sanders J.A., Wang J.P.: On recursion operators. Phys. D, 149, 1–10 (2001)MathSciNetCrossRefMATHGoogle Scholar
  30. SW02.
    Schäfer T., Wayne C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D, 196, 90–105 (2004)MathSciNetCrossRefMATHGoogle Scholar
  31. Sok84.
    V.V. Sokolov, Hamiltonian property of the Krichever–Novikov equation. (Russian), Dokl. Akad. Nauk SSSR, 277 (1984), no. 1, 48–50.Google Scholar
  32. TF86.
    L.A. Takhtadzhyan and L.D. Faddeev, The Hamiltonian Approach in Soliton Theory, Nauka, Moscow, 1986.Google Scholar
  33. TT11.
    D. Talati and R. Turhan, On a recently introduced fifth-order bi-Hamiltonian equation and trivially related Hamiltonian operators, SIGMA Symmetry Integrability Geom. Methods Appl., 7 (2011), 081.Google Scholar
  34. WKI79.
    Wadati M., Konno K., Ichikawa Y.H.: A generalization of inverse scattering method. J. Phys. Soc. Japan, 46, 1965–1966 (1979)MathSciNetCrossRefGoogle Scholar
  35. Wan09.
    Wang J.P.: Lenard scheme for two-dimensional periodic Volterra chain. J. Math. Phys., 50, 023506 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2013

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.Department of MathematicsMIT.CambridgeUSA

Personalised recommendations