Skip to main content
Log in

Hot topics in cold gases

A mathematical physics perspective

  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

We present an overview of mathematical results on the low temperature properties of dilute quantum gases, which have been obtained in the past few years. The presentation includes a discussion of Bose–Einstein condensation, the excitation spectrum for trapped gases and its relation to superfluidity, as well as the appearance of quantized vortices in rotating systems. All these properties are intensely being studied in current experiments on cold atomic gases. We will give a description of the mathematics involved in understanding these phenomena, starting from the underlying many-body Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  2. Bogoliubov N.N.: On the theory of superfluidity. Acad. Sci. USSR. J. Phys. 11, 23–32 (1947)

    MathSciNet  Google Scholar 

  3. Bose S.N.: Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178–181 (1924)

    Article  MATH  Google Scholar 

  4. Buffet E., Pulè J.V.: Fluctuation properties of the imperfect Bose gas. J. Math. Phys. 24, 1608–1616 (1983)

    Article  MathSciNet  Google Scholar 

  5. F. Calogero, Ground state of a one-dimensional N-body system, J. Math. Phys., 10 (1969), 2197–2200. Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12 (1971), 419–436.

    Google Scholar 

  6. Cornean H.D., Dereziński J., Ziń P.: On the infimum of the energy-momentum spectrum of a homogeneous Bose gas. J. Math. Phys. 50, 062103 (2009)

    Article  MathSciNet  Google Scholar 

  7. Davis K.B., Mewes M.-O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  Google Scholar 

  8. J. Dereziński and M. Napiórkowski, Excitation spectrum of interacting bosons in the mean-field infinite-volume limit, preprint, arXiv:1305.3641.

  9. Dyson F.J.: Ground-state energy of a hard-sphere gas. Phys. Rev. 106, 20–26 (1957)

    Article  MATH  Google Scholar 

  10. Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Statist. Phys. 18, 335–383 (1978)

    Article  MathSciNet  Google Scholar 

  11. A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzungsber. Preuss. Akad. Wiss., Phys.-math. Klasse, 1924 (1924), 261–267. Zweite Abhandlung, Sitzungsber. Preuss. Akad. Wiss., Phys.-math. Klasse, 1925 (1925), 3–14.

  12. Fröhlich J., Simon B., Spencer T.: Infrared bounds, phase transitions and continuous symmetry breaking. Comm. Math. Phys. 50, 79–95 (1976)

    Article  MathSciNet  Google Scholar 

  13. Girardeau M.: Relationship between systems of impenetrable bosons and fermions in one dimension. J. Mathematical Phys. 1, 516–523 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giuliani A., Seiringer R.: The ground state energy of the weakly interacting Bose gas at high density. J. Stat. Phys. 135, 915–934 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Grech and R. Seiringer, The excitation spectrum for weakly interacting bosons in a trap, preprint, arXiv:1205.5259, Comm. Math. Phys., in press.

  16. Hainzl C., Seiringer R.: The BCS critical temperature for potentials with negative scattering length. Lett. Math. Phys. 84, 99–107 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. T.D. Lee and C.N. Yang, Many-body problem in quantum mechanics and quantum statistical mechanics, Phys. Rev., 105 (1957), 1119–1120. T.D. Lee, K. Huang and C.N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev., 106 (1957), 1135–1145.

    Google Scholar 

  18. M. Lewin, P.T. Nam and N. Rougerie, Derivation of Hartree’s theory for generic mean-field Bose systems, preprint, arXiv:1303.0981.

  19. M. Lewin, P.T. Nam, S. Serfaty and J.P. Solovej, Bogoliubov spectrum of interacting Bose gases, preprint, arXiv:1211.2778.

  20. Lewin M., Seiringer R.: Strongly correlated phases in rapidly rotating Bose gases, J. Stat. Phys. 137, 1040–1062 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. E.H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. (2), 130 (1963), 1605–1616. E.H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. (2), 130 (1963), 1616–1624.

    Google Scholar 

  22. Lieb E.H., Seiringer R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)

    Article  Google Scholar 

  23. Lieb E.H., Seiringer R.: Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Comm. Math. Phys. 264, 505–537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. LiebE.H. Seiringer R., Solovej J.P.: Ground-state energy of the low-density Fermi gas. Phys. Rev. A, 71, 053605 (2005)

    Article  Google Scholar 

  25. E.H. Lieb, R. Seiringer, J.P. Solovej and J. Yngvason, The Mathematics of the Bose Gas and Its Condensation, Oberwolfach Semin., 34, Birkhäuser Verlag, Basel, 2005; arXiv:cond-mat/0610117.

  26. Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A, 61, 043602 (2000)

    Article  Google Scholar 

  27. Lieb E.H., Seiringer R., Yngvason J.: Yrast line of a rapidly rotating Bose gas: Gross–Pitaevskii regime. Phys. Rev. A 79, 063626 (2009)

    Article  Google Scholar 

  28. Lieb E.H., Yngvason J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)

    Article  Google Scholar 

  29. Lieb E.H., Yngvason J.: The ground state energy of a dilute two-dimensional Bose gas. J. Statist. Phys., 103, 509–526 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Penrose O., Onsager L.: Bose–Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956)

    Article  MATH  Google Scholar 

  31. N. Rougerie, S. Serfaty and J. Yngvason, Quantum Hall states of bosons in rotating anharmonic traps, preprint, arXiv:1212.1085. Quantum Hall phases and plasma analogy in rotating trapped Bose gases, preprint, arXiv:1301.1043.

  32. Seiringer R.: Ground state asymptotics of a dilute, rotating gas. J. Phys. A, 36, 9755–9778 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Seiringer R.: The thermodynamic pressure of a dilute Fermi gas. Comm. Math. Phys., 261, 729–757 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Seiringer R.: Free energy of a dilute Bose gas: Lower bound. Comm. Math. Phys., 279, 595–636 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Seiringer R.: The excitation spectrum for weakly interacting bosons. Comm. Math. Phys. 306, 565–578 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Seiringer, Cold quantum gases and Bose–Einstein condensation, In: Quantum Many Body Systems, Lecture Notes in Math., 2051, Springer-Verlag, 2012, pp. 55–92; In: Quantum Theory from Small to Large Scales, Les Houches 2010, Oxford Univ. Press, 2012, pp. 429–466.

  37. Seiringer R., Ueltschi D.: Rigorous upper bound on the critical temperature of dilute Bose gases. Phys. Rev. B 80, 014502 (2009)

    Article  Google Scholar 

  38. B. Sutherland, Quantum many-body problem in one dimension: Ground state, J. Math. Phys., 12 (1971), 246–250. Quantum many-body problem in one dimension: Thermodynamics, J. Math. Phys., 12 (1971), 251–256.

    Google Scholar 

  39. Ueltschi D.: Feynman cycles in the Bose gas. J. Math. Phys. 47, 123303 (2006)

    Article  MathSciNet  Google Scholar 

  40. Yau H.-T., Yin J.: The second order upper bound for the ground energy of a Bose gas. J. Stat. Phys. 136, 453–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yin J.: Free energies of dilute Bose gases: Upper bound. J. Stat. Phys. 141, 683–726 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Seiringer.

Additional information

Communicated by: Yasuyuki Kawahigashi

This article is based on the 11th Takagi Lectures that the author delivered at the University of Tokyo on November 17 and 18, 2012.

About this article

Cite this article

Seiringer, R. Hot topics in cold gases. Jpn. J. Math. 8, 185–232 (2013). https://doi.org/10.1007/s11537-013-1264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-013-1264-5

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation