Japanese Journal of Mathematics

, Volume 8, Issue 2, pp 185–232 | Cite as

Hot topics in cold gases

A mathematical physics perspective
Article

Abstract

We present an overview of mathematical results on the low temperature properties of dilute quantum gases, which have been obtained in the past few years. The presentation includes a discussion of Bose–Einstein condensation, the excitation spectrum for trapped gases and its relation to superfluidity, as well as the appearance of quantized vortices in rotating systems. All these properties are intensely being studied in current experiments on cold atomic gases. We will give a description of the mathematics involved in understanding these phenomena, starting from the underlying many-body Schrödinger equation.

Keywords and phrases

quantum statistical mechanics Bose–Einstein condensation dilute Bose gas superfluidity excitation spectrum 

Mathematics Subject Classification (2010)

82B10 82-02 46N50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)CrossRefGoogle Scholar
  2. 2.
    Bogoliubov N.N.: On the theory of superfluidity. Acad. Sci. USSR. J. Phys. 11, 23–32 (1947)MathSciNetGoogle Scholar
  3. 3.
    Bose S.N.: Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178–181 (1924)CrossRefMATHGoogle Scholar
  4. 4.
    Buffet E., Pulè J.V.: Fluctuation properties of the imperfect Bose gas. J. Math. Phys. 24, 1608–1616 (1983)MathSciNetCrossRefGoogle Scholar
  5. 5.
    F. Calogero, Ground state of a one-dimensional N-body system, J. Math. Phys., 10 (1969), 2197–2200. Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12 (1971), 419–436.Google Scholar
  6. 6.
    Cornean H.D., Dereziński J., Ziń P.: On the infimum of the energy-momentum spectrum of a homogeneous Bose gas. J. Math. Phys. 50, 062103 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Davis K.B., Mewes M.-O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)CrossRefGoogle Scholar
  8. 8.
    J. Dereziński and M. Napiórkowski, Excitation spectrum of interacting bosons in the mean-field infinite-volume limit, preprint, arXiv:1305.3641.Google Scholar
  9. 9.
    Dyson F.J.: Ground-state energy of a hard-sphere gas. Phys. Rev. 106, 20–26 (1957)CrossRefMATHGoogle Scholar
  10. 10.
    Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Statist. Phys. 18, 335–383 (1978)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzungsber. Preuss. Akad. Wiss., Phys.-math. Klasse, 1924 (1924), 261–267. Zweite Abhandlung, Sitzungsber. Preuss. Akad. Wiss., Phys.-math. Klasse, 1925 (1925), 3–14.Google Scholar
  12. 12.
    Fröhlich J., Simon B., Spencer T.: Infrared bounds, phase transitions and continuous symmetry breaking. Comm. Math. Phys. 50, 79–95 (1976)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Girardeau M.: Relationship between systems of impenetrable bosons and fermions in one dimension. J. Mathematical Phys. 1, 516–523 (1960)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Giuliani A., Seiringer R.: The ground state energy of the weakly interacting Bose gas at high density. J. Stat. Phys. 135, 915–934 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    P. Grech and R. Seiringer, The excitation spectrum for weakly interacting bosons in a trap, preprint, arXiv:1205.5259, Comm. Math. Phys., in press.Google Scholar
  16. 16.
    Hainzl C., Seiringer R.: The BCS critical temperature for potentials with negative scattering length. Lett. Math. Phys. 84, 99–107 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    T.D. Lee and C.N. Yang, Many-body problem in quantum mechanics and quantum statistical mechanics, Phys. Rev., 105 (1957), 1119–1120. T.D. Lee, K. Huang and C.N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev., 106 (1957), 1135–1145.Google Scholar
  18. 18.
    M. Lewin, P.T. Nam and N. Rougerie, Derivation of Hartree’s theory for generic mean-field Bose systems, preprint, arXiv:1303.0981.Google Scholar
  19. 19.
    M. Lewin, P.T. Nam, S. Serfaty and J.P. Solovej, Bogoliubov spectrum of interacting Bose gases, preprint, arXiv:1211.2778.Google Scholar
  20. 20.
    Lewin M., Seiringer R.: Strongly correlated phases in rapidly rotating Bose gases, J. Stat. Phys. 137, 1040–1062 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    E.H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. (2), 130 (1963), 1605–1616. E.H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. (2), 130 (1963), 1616–1624.Google Scholar
  22. 22.
    Lieb E.H., Seiringer R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)CrossRefGoogle Scholar
  23. 23.
    Lieb E.H., Seiringer R.: Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Comm. Math. Phys. 264, 505–537 (2006)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    LiebE.H. Seiringer R., Solovej J.P.: Ground-state energy of the low-density Fermi gas. Phys. Rev. A, 71, 053605 (2005)CrossRefGoogle Scholar
  25. 25.
    E.H. Lieb, R. Seiringer, J.P. Solovej and J. Yngvason, The Mathematics of the Bose Gas and Its Condensation, Oberwolfach Semin., 34, Birkhäuser Verlag, Basel, 2005; arXiv:cond-mat/0610117.Google Scholar
  26. 26.
    Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A, 61, 043602 (2000)CrossRefGoogle Scholar
  27. 27.
    Lieb E.H., Seiringer R., Yngvason J.: Yrast line of a rapidly rotating Bose gas: Gross–Pitaevskii regime. Phys. Rev. A 79, 063626 (2009)CrossRefGoogle Scholar
  28. 28.
    Lieb E.H., Yngvason J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)CrossRefGoogle Scholar
  29. 29.
    Lieb E.H., Yngvason J.: The ground state energy of a dilute two-dimensional Bose gas. J. Statist. Phys., 103, 509–526 (2001)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Penrose O., Onsager L.: Bose–Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956)CrossRefMATHGoogle Scholar
  31. 31.
    N. Rougerie, S. Serfaty and J. Yngvason, Quantum Hall states of bosons in rotating anharmonic traps, preprint, arXiv:1212.1085. Quantum Hall phases and plasma analogy in rotating trapped Bose gases, preprint, arXiv:1301.1043.Google Scholar
  32. 32.
    Seiringer R.: Ground state asymptotics of a dilute, rotating gas. J. Phys. A, 36, 9755–9778 (2003)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Seiringer R.: The thermodynamic pressure of a dilute Fermi gas. Comm. Math. Phys., 261, 729–757 (2006)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Seiringer R.: Free energy of a dilute Bose gas: Lower bound. Comm. Math. Phys., 279, 595–636 (2008)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Seiringer R.: The excitation spectrum for weakly interacting bosons. Comm. Math. Phys. 306, 565–578 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    R. Seiringer, Cold quantum gases and Bose–Einstein condensation, In: Quantum Many Body Systems, Lecture Notes in Math., 2051, Springer-Verlag, 2012, pp. 55–92; In: Quantum Theory from Small to Large Scales, Les Houches 2010, Oxford Univ. Press, 2012, pp. 429–466.Google Scholar
  37. 37.
    Seiringer R., Ueltschi D.: Rigorous upper bound on the critical temperature of dilute Bose gases. Phys. Rev. B 80, 014502 (2009)CrossRefGoogle Scholar
  38. 38.
    B. Sutherland, Quantum many-body problem in one dimension: Ground state, J. Math. Phys., 12 (1971), 246–250. Quantum many-body problem in one dimension: Thermodynamics, J. Math. Phys., 12 (1971), 251–256.Google Scholar
  39. 39.
    Ueltschi D.: Feynman cycles in the Bose gas. J. Math. Phys. 47, 123303 (2006)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Yau H.-T., Yin J.: The second order upper bound for the ground energy of a Bose gas. J. Stat. Phys. 136, 453–503 (2009)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Yin J.: Free energies of dilute Bose gases: Upper bound. J. Stat. Phys. 141, 683–726 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2013

Authors and Affiliations

  1. 1.Institute of Science and Technology (IST) AustriaKlosterneuburgAustria

Personalised recommendations