Skip to main content
Log in

Covariant quantization: spectral analysis versus deformation theory

  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract.

Formal deformation or rather symbolic calculus? To which extent do these approaches complete each other in the study of symmetry-preserving quantization procedures for homogeneous spaces? The representation theory of underlying Lie groups shows that the answer is much more delicate than initially thought and that it cannot be always reduced to asymptotic expansions with respect to some Planck’s constant. The main goal of this survey is to give hints regarding the aims of each approach and, on the domain where these intersect, to compare the answers they lead to.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Alekseev and E. Meinrenken, The non-commutative Weil algebra, Invent. Math., 139 (2000), 135–172

    MATH  MathSciNet  Google Scholar 

  2. A. Alekseev and E. Meinrenken, Poisson geometry and the Kashiwara–Vergne conjecture, C. R. Math. Acad. Sci. Paris, 335 (2002), 723–728

    MATH  MathSciNet  Google Scholar 

  3. A. Alekseev and E. Meinrenken, On the Kashiwara–Vergne conjecture, Invent. Math., 164 (2006), 615–634

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Andler, A. Dvorsky and S. Sahi, Kontsevich quantization and invariant distributions on Lie groups, Ann. Sci. École Norm. Sup. (4), 35 (2002), 371–390

    MATH  MathSciNet  Google Scholar 

  5. M. Andler, S. Sahi and Ch. Torossian, Convolution of invariant distributions: proof of the Kashiwara–Vergne conjecture, Lett. Math. Phys., 69 (2004), 177–203

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Aoki and T. Ibukiyama, Simple graded rings of Siegel modular forms, differential operators and Borcherds products, Internat. J. Math., 16 (2005), 249–279

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Arazy and B. Ørsted, Asymptotic expansions of Berezin transforms, Indiana Univ. Math. J., 49 (2000), 7–30

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Arazy and H. Upmeier, Weyl calculus for complex and real symmetric domains, In: Harmonic Analysis on Complex Homogeneous Domains and Lie Groups, Rome, 2001, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13, 2002, pp. 165–181.

  9. J. Arazy and H. Upmeier, Invariant symbolic calculi and eigenvalues of invariant operators on symmetric domains, In: Function Spaces, Interpolation Theory and Related Topics, Lund, 2000, de Gruyter, Berlin, 2002, pp. 151–211.

  10. J. Arazy and H. Upmeier, A one-parameter calculus for symmetric domains, Math. Nachr., 280 (2007), 939–961

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337–404

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Atiyah and W. Schmid, A geometric construction of the discrete series of semisimple Lie groups, Invent. Math., 42 (1977), 1–62

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Ban, On Rankin–Cohen–Ibukiyama operators for automorphic forms of several variables, Comment. Math. Univ. St. Pauli, 55 (2006), 149–171

    MATH  MathSciNet  Google Scholar 

  14. D. Barbash, S. Sahi and B. Speh, Degenerate series representations for \(GL(2n, {\mathbb {R}})\) and Fourier analysis, In: Indecomposable Representations of Lie Groups and Their Physical Applications, Rome, 1988, (ed. V. Cantoni), Sympos. Math., 31, Academic Press, 1990, pp. 45–69.

  15. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization, Ann. Physics, 111 (1978), 61–110

    MATH  MathSciNet  Google Scholar 

  16. S. Ben Saïd, Weighted Bergman spaces on bounded symmetric domains, Pacific J. Math., 206 (2002), 39–68

    Article  MATH  MathSciNet  Google Scholar 

  17. F.A. Berezin, General concept of quantization, Comm. Math. Phys., 40 (1975), 153–174

    Article  MathSciNet  Google Scholar 

  18. F.A. Berezin, Connection between co- and contravariant symbols of operators on the classical complex symmetric spaces, Dokl. Akad. Nauk SSSR, 241 (1978), 15–17

    MathSciNet  Google Scholar 

  19. S. Bergman, The Kernel Function and Conformal Mapping, Math. Surveys, 5, Amer. Math. Soc., 1950.

  20. W. Bertram, Un théorème de Liouville pour les algèbres de Jordan, Bull. Soc. Math. France, 124 (1996), 299–328

    MATH  MathSciNet  Google Scholar 

  21. W. Bertram, Algebraic structures of Makarevič spaces. I, Transform. Groups, 3 (1998), 3–32

    Article  MATH  MathSciNet  Google Scholar 

  22. W. Bertram, The Geometry of Jordan and Lie Structures, Lecture Notes in Math., 1754, Springer-Verlag, 2000.

  23. P. Bieliavsky and M. Pevzner,Symmetric spaces and star representations. II. Causal symmetric spaces, J. Geom. Phys., 41 (2002), 224–234.

    Article  MATH  MathSciNet  Google Scholar 

  24. P. Bieliavsky and M. Pevzner, Symmetric spaces and star representations. III. The Poincaré disc, In: Noncommutative Harmonic Analysis, Progr. Math., 220, Birkhäuser Boston, Boston, MA, 2004, pp. 61–77

  25. P. Bieliavsky, X. Tang and Y. Yao, Rankin–Cohen brackets and formal quantization, Adv. Math., 212 (2007), 293–314

    Article  MATH  MathSciNet  Google Scholar 

  26. Th. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal., 74 (1987), 199–291

    Article  MATH  MathSciNet  Google Scholar 

  27. Th. Branson, G. Ólafsson and B. Órsted, Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup, J. Funct. Anal., 135 (1996), 163–205

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula, Comm. Amth. Phys., 212 (2000), 591–611.

    Article  MATH  MathSciNet  Google Scholar 

  29. A. Cattaneo and Ch. Torossian, Quantification pour les paires symetriques et diagrammes de Kontsevich, Ann. Sci. Éc. Norm. Supér. (4), to appear (2008).

  30. J.-L. Clerc, A generalized Hecke Identity, J. Fourier Anal. Appl., 6 (2000), 105–111

    Article  MATH  MathSciNet  Google Scholar 

  31. H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann., 217 (1975), 271–285

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Connes and H. Moscovici, Rankin–Cohen brackets and the Hopf algebra of transverse geometry, Mosc. Math. J., 4 (2004), 111–130

    MATH  MathSciNet  Google Scholar 

  33. G. van Dijk, A new approach to Berezin kernels and canonical representations, In: Asymptotic Combinatorics with Application to Mathematical Physics, Proceedings of the NATO Advanced Study Institute, (eds. V.A. Malyshev et al.), NATO Sci. Ser. II Math. Phys. Chem., 77, Kluwer Acad. Publ., Dordrecht, 2002, pp. 279–305.

  34. G. van Dijk and S. Hille, Canonical representations related to hyperbolic spaces, J. Funct. Anal., 147 (1997), 109–139

    Article  MATH  MathSciNet  Google Scholar 

  35. G. van Dijk and S. Hille, Maximal degenerate representations, Berezin kernels and canonical representations, In: Lie Groups and Lie Algebras, Math. Appl., 433, Kluwer Acad. Publ., Dordrecht, 1998, pp. 285–298.

  36. G. van Dijk and V.F. Molchanov, The Berezin form for rank one para-Hermitian symmetric spaces, J. Math. Pures Appl. (9), 77 (1998), 747–799

    MATH  MathSciNet  Google Scholar 

  37. G. van Dijk and V.F. Molchanov, Tensor products of maximal degenerate series representations of the group,\(SL(n, {\mathbb{R}})\)), J. Math. Pures Appl. (9), 78 (1999), 99–119

    Google Scholar 

  38. G. van Dijk and M. Pevzner, Berezin kernels on tube domains, J. Funct. Anal., 181 (2001), 189–208

    Article  MATH  MathSciNet  Google Scholar 

  39. G. van Dijk and M. Pevzner, Matrix-valued Berezin kernels, In: Geometry and Analysis on Finite- and Infinite-dimensional Lie Groups, (eds. A. Strasburger et al.), Banach Center Publ., 55, Polish Acad. Sci. Inst. Math., Warszawa, 2002, pp. 269–288.

  40. G. van Dijk and M. Pevzner, Berezin kernels and maximal degenerate representations associated with Riemannian symmetric spaces of Hermitian type, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 292 (2002), 11–21

    Google Scholar 

  41. G. van Dijk, M. Pevzner and S. Aparicio, Invariant Hilbert subspaces of the oscillator representation, Indag. Math. (N.S.), 14 (2003), 309–318.

    Article  MATH  MathSciNet  Google Scholar 

  42. G. van Dijk and M. Pevzner, Ring structures for holomorphic discrete series and Rankin–Cohen brackets, J. Lie Theory, 17 (2007), 283–305

    MATH  MathSciNet  Google Scholar 

  43. G. van Dijk and M. Pevzner, H*-algebras and quantization of para-Hermitian spaces, Proc. Amer. Math. Soc., 136 (2008), 2253–2260

    Article  MATH  MathSciNet  Google Scholar 

  44. P.A.M. Dirac, The Principles of Quantum Mechanics, 3d ed., Oxford, at the Clarendon Press, 1947.

    MATH  Google Scholar 

  45. V. Dolgushev, Covariant and equivariant formality theorems, Adv. Math., 191 (2005), 147–177

    Article  MATH  MathSciNet  Google Scholar 

  46. M. Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup. (4), 10 (1977), 265–288

    MATH  MathSciNet  Google Scholar 

  47. A. Dvorsky and S. Sahi, Explicit Hilbert spaces for certain unipotent representations. II, Invent. Math., 138 (1999), 203–224

    Article  MATH  MathSciNet  Google Scholar 

  48. A. Dvorsky and S. Sahi, Explicit Hilbert spaces for certain unipotent representations. III, J. Funct. Anal., 201 (2003), 430–456

    Article  MATH  MathSciNet  Google Scholar 

  49. W. Eholzer and T. Ibukiyama, Rankin–Cohen type differential operators for Siegel modular forms, Internat. J. Math., 9 (1998), 443–463

    Article  MATH  MathSciNet  Google Scholar 

  50. A. El Gradechi, The Lie theory of the Rankin–Cohen brackets and allied bi-differential operators, Adv. Math., 207 (2006), 484–531

    Article  MATH  MathSciNet  Google Scholar 

  51. M. Engliš, A mean value theorem on bounded symmetric domains, Proc. Amer. Math. Soc., 127 (1999), 3259–3268

    Article  MATH  MathSciNet  Google Scholar 

  52. J. Faraut, Intégrales de Riesz sur un espace symétrique ordonné, In: Geometry and Analysis on Finite- and Infinite-dimensional Lie Groups, Bȩdlewo, 2000, Banach Center Publ., 55, Polish Acad. Sci., Warsaw, 2002, pp. 289–308.

  53. J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Sci. Publ., 1994.

  54. J. Faraut and G. Ólafsson, Causal semisimple symmetric spaces, the geometry and harmonic analysis, In: Semigroups in Algebra, Geometry and Analysis, (eds. K.H. Hofmann, J.D. Lawson and E.B. Vinberg), de Gruyter, Berlin, 1995.

  55. J. Faraut and M. Pevzner, Berezin kernels and analysis on Makarevich spaces, Indag. Math. (N.S.), 16 (2005), 461–486

    Article  MATH  MathSciNet  Google Scholar 

  56. J. Faraut and E.G.F. Thomas, Invariant Hilbert spaces of holomorphic functions, J. Lie Theory, 9 (1999), 383–402

    MATH  MathSciNet  Google Scholar 

  57. M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math. (2), 111 (1980), 253–311

    Article  MathSciNet  Google Scholar 

  58. I.M. Gelfand and L.A. Dikiy, A family of Hamiltonian structures connected with integrable nonlinear differential equations, Akad. Nauk SSSR Inst. Prikl. Mat. Preprint, 136 (1978), 41 p.

    Google Scholar 

  59. S. Gindikin, Fourier transform and Hardy spaces of \(\bar{\partial}\)-cohomology in tube domains, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 1139–1143.

  60. P. Gordan, Invariantentheorie, Teubner, Leipzig, 1887.

  61. S. Gundelfinger, Zur der binären Formen, J. Reine Angew. Math., 100 (1886), 413–424

    Google Scholar 

  62. C.S. Herz, Bessel functions of matrix argument, Ann. of Math. (2), 61 (1955), 474–523

    Article  MathSciNet  Google Scholar 

  63. S. Hille, Canonical representations, Ph.D thesis, Leiden Univ., 1999.

  64. L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-differential Operators, Classics Math., Springer-Verlag, Berlin, 2007.

  65. R. Howe, On some results of Strichartz and Rallis and Schiffman, J. Funct. Anal., 32 (1979), 297–303

    Article  MATH  MathSciNet  Google Scholar 

  66. R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc., 313 (1989), 539–570

    Article  MATH  MathSciNet  Google Scholar 

  67. R. Howe and S.T. Lee, Degenerate principal series representations of \(GL_n (\mathbb{C})\) and \(GL_n (\mathbb{R})\), J. Funct. Anal., 166 (1999), 244–309

    Article  MATH  MathSciNet  Google Scholar 

  68. R. Howe and E. Tan, Non-Abelian Harmonic Analysis. Applications of \({SL}(2,{\mathbb{R}})\) , Universi, Springer-Verlag, New York, 1992.

  69. R. Howe and E. Tan, Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations, Bull. Amer. Math. Soc., 28 (1993), 1–74

    Article  MATH  MathSciNet  Google Scholar 

  70. L.K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Transl. Math. Monogr., 6, Amer. Math. Soc., Providence, RI, 1963.

  71. H.P. Jakobsen and M. Vergne, Restrictions and expansions of holomorphic representations, J. Funct. Anal., 34 (1979), 29–53

    Article  MATH  MathSciNet  Google Scholar 

  72. K. Johnson, Degenerate principal series and compact groups, Math. Ann., 287 (1990), 703–718

    Article  MATH  MathSciNet  Google Scholar 

  73. K. Johnson, Degenerate principal series on tube type domains, Contemp. Math., 138 (1992), 175–187

    Google Scholar 

  74. S. Kaneyuki and M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 81–98

    Article  MATH  MathSciNet  Google Scholar 

  75. I.L. Kantor, Non-linear groups of transformations defined by general norms of Jordan algebras, Soviet Math Dokl., 8 (1967), 176–180

    MATH  Google Scholar 

  76. M. Kashiwara and M. Vergne, On the Segal–Shale–Weil representations and harmonic polynomials, Invent. Math., 44 (1978), 1–47

    Article  MATH  MathSciNet  Google Scholar 

  77. M. Kashiwara and M. Vergne, The Campbell–Hausdorff formula and invariant hyperfunctions, Invent. Math., 47 (1978), 249–272

    Article  MATH  MathSciNet  Google Scholar 

  78. M. Kashiwara and M. Vergne, Functions on the Shilov boundary of the generalized half plane, In: Non-Commutative Harmonic Analysis, Lectures Notes in Math., 728, Springer-Verlag, 1979, pp. 136–176.

  79. A.A. Kirillov, Invariant operators over geometric quantities, In: Current Problems in Mathematics, Akad. Nauk SSSR, 16, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1980, pp. 3–29.

  80. A.A. Kirillov, Lectures on the Orbit Method, Grad. Stud. Math., 64, Amer. Math. Soc., Providence, RI, 2004.

  81. T. Kobayashi, Discrete decomposability of the restriction of \(A_{\mathfrak q}(\lambda)\) with respect to reductive subgroups and its applications, Invent. Math., 117 (1994), 181–205

    Article  MATH  MathSciNet  Google Scholar 

  82. T. Kobayashi, The restriction of \(A_{\mathfrak q}(\lambda)\) to reductive subgroups. I, Proc. Japan Acad. Sér. A Math. Sci., 69 (1993), 262–267; II, ibid., 71 (1995), 24–26.

  83. T. Kobayashi, Multiplicity-free theorem in branching problems of unitary highest weight modules, In: Proceedings of the Symposium on Representation Theory, Saga, Kyushu, (ed. K. Mimachi), 1997, pp. 9–17.

  84. T. Kobayashi, Discrete decomposability of the restriction of \(A_{\mathfrak q}(\lambda)\) with respect to reductive subgroups. II. Microlocal analysis and asymptotic K-support, Ann. of Math. (2), 147 (1998), 709–729

    Article  MATH  MathSciNet  Google Scholar 

  85. T. Kobayashi, Discrete decomposability of the restriction of \(A_{\mathfrak q}(\lambda)\) with respect to reductive subgroups. III. Restriction of Harish-Chandra modules and associated varieties, Invent. Math., 131 (1998), 229–256

    MATH  Google Scholar 

  86. T. Kobayashi, Discrete series representations for the orbit spaces arising from two involutions of real reductive Lie groups, J. Funct. Anal., 152 (1998), 100–135

    Article  MATH  MathSciNet  Google Scholar 

  87. T. Kobayashi, Theory of discretely decomposable restrictions of unitary representations of semisimple Lie groups and some applications, Sugaku Expositions, 18 (2005), 1–37

    MathSciNet  MATH  Google Scholar 

  88. T. Kobayashi, Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci., 41 (2005), 497–549

    Article  MATH  MathSciNet  Google Scholar 

  89. T. Kobayashi, Visible actions on symmetric spaces, Transform. Groups, 12 (2007), 671–694

    Article  MATH  MathSciNet  Google Scholar 

  90. T. Kobayashi, Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs, In: Representation Theory and Automorphic Forms, Progr. Math., 255, Birkhäuser Boston, Boston, MA, 2007, pp. 45–109.

  91. T. Kobayashi and B. Órsted, Analysis on the minimal representation of O(p,q). I. Realization via conformal geometry, Adv. Math., 180 (2003), 486–512

    Article  MATH  MathSciNet  Google Scholar 

  92. T. Kobayashi and B. Órsted, Analysis on the minimal representation of O(p,q). II. Branching laws, Adv. Math., 180 (2003), 513–550

    Article  MATH  MathSciNet  Google Scholar 

  93. T. Kobayashi and B. Órsted, Analysis on the minimal representation of O(p,q). III. Ultrahyperbolic equations on \({\mathbb{R}}^{p-1,q-1}\), Adv. Math., 180 (2003), 551–595

  94. M. Koecher, Über eine Gruppe von rationalen Abbildungen, Invent. Math., 3 (1967), 136–171

    Article  MATH  MathSciNet  Google Scholar 

  95. M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66 (2003), 157–216

    Article  MATH  MathSciNet  Google Scholar 

  96. B. Kostant, A branching law for subgroups fixed by an involution and a noncompact analogue of the Borel–Weil theorem, In: Noncommutative Harmonic Analysis, Progr. Math., 220, Birkhäuser Boston, Boston, MA, 2004, pp. 291–353.

  97. B. Kostant and S. Sahi, The Capelli identity, tube domains, and the generalized Laplace transform, Adv. Math., 87 (1991), 71–92

    Article  MATH  MathSciNet  Google Scholar 

  98. B. Kostant and S. Sahi, Jordan algebras and Capelli identities, Invent. Math., 112 (1993), 657–664

    Article  MATH  MathSciNet  Google Scholar 

  99. B. Krötz, On Hardy and Bergman spaces on complex Ol’shanskiǐ semigroups, Math. Ann., 312 (1998), 13–52

    Article  MATH  MathSciNet  Google Scholar 

  100. P.D. Lax and R.S. Phillips, Scattering Theory for Automorphic Functions, Ann. of Math. Stud., 87, Princeton Univ. Press, 1976.

  101. S. Lee, On some degenerate principal series representations of U(n,n), J. Funct. Anal., 126 (1994), 305–366

    Article  MATH  MathSciNet  Google Scholar 

  102. S. Lee, Degenerate principal series representations of \(Sp(2n, {\mathbb{R}})\) , Compositio Math., 103 (1996), 123–151

    MATH  MathSciNet  Google Scholar 

  103. J. Liouville, Théorème sur l’équation \(dx^2+dy^2+dz^2=\lambda(d\alpha^2+d\beta^2+d\gamma^2)\) , J. Math. Pures Appl., 15 (1850), p. 103

  104. O. Loos, Symmetric Spaces. I, II, Benjamin, New York, 1969.

  105. G.W. Mackey, Unitary Group Representations in Physics, Probability and Number Theory, Math. Lecture Note Ser., 55, Benjamin/Cummings Publ. Co., Inc., Reading, Mass., 1978; Second ed., Adv. Book Classics, Addison-Wesley Publ. Co., Rewood City, CA, 1989.

  106. D. Manchon and Ch. Torossian, Cohomologie tangente et cup-produit pour la quantification de Kontsevich, Ann. Math. Blaise Pascal, 10 (2003), 75–106

    MATH  MathSciNet  Google Scholar 

  107. V.F. Molchanov, Tensor products of unitary representations of the three-dimensional Lorentz group, Math. USSR-Izv., 15 (1980), 113–143

    Article  MATH  Google Scholar 

  108. V.F. Molchanov, Maximal degenerate series representations of the universal covering of the group SU(n,n), In: Lie Groups and Lie Algebras. Their Representations, Generalisations and Applications, (eds. B.P. Komrakov et al.), Math. Appl., 433, Kluwer Acad. Publ., 1998, pp. 313–336

  109. Yu. Neretin, Matrix analogues of the B-function, and the Plancherel formula for Berezin kernel representations, Sb. Math., 191 (2000), 683–715

    Article  MathSciNet  Google Scholar 

  110. Yu. Neretin, Matrix balls, radial analysis of Berezin kernels, and hypergeometric determinants, Mosc. Math. J., 1 (2001), 157–220

    MATH  MathSciNet  Google Scholar 

  111. Yu. Neretin, (2002) Plancherel formula for Berezin deformation of L 2 on Riemannian symmetric space, J. Funct. Anal., 189 336–408

    Article  MATH  MathSciNet  Google Scholar 

  112. T. Nomura, Berezin transforms and group representations, J. Lie Theory, 8 (1998), 433–440

    MATH  MathSciNet  Google Scholar 

  113. G. Ólafsson and B. Órsted, The holomorphic discrete series for affine symmetric spaces. I, J. Funct. Anal., 81 (1988), 126–159

    Article  MATH  MathSciNet  Google Scholar 

  114. G.I. Olshanski, Invariant cones in Lie algebras, Lie semigroups and holomorphic discrete series, Funct. Anal. Appl., 15 (1981), 275–285

    Google Scholar 

  115. P.J. Olver, Classical Invariant Theory, London Math. Soc. Stud. Texts, 44, Cambridge Univ. Press, 1999.

  116. P.J. Olver and J.A. Sanders, Transvectants, modular forms, and the Heisenberg algebra, Adv. in Appl. Math., 25 (2000), 252–283

    Article  MATH  MathSciNet  Google Scholar 

  117. B. Órsted and B. Speh, Branching laws for some unitary representations of SL(4,\({\mathbb{R}}\)), SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), 19 p.

    Google Scholar 

  118. B. Órsted and J. Vargas, Restriction of square integrable representations: discrete spectrum, Duke Math. J., 123, (2004) 609–633

    Article  MathSciNet  Google Scholar 

  119. B. Órsted and G. Zhang, Generalized principal series representations and tube domains, Duke Math. J., 78 (1995), 335–357

    Article  MathSciNet  Google Scholar 

  120. B. Órsted and G. Zhang, Capelli identity and relative discrete series of line bundles over tube domains, In: Geometry and Analysis on Finite- and Infinite-dimensional Lie Groups, Proceedings of the workshop on Lie groups and Lie algebras, Bedlewo, Poland, September 4-15, 2000,Banach Center Publ., 55, Polish Acad. Sci., Warszawa, 2002, pp. 349–357

  121. T. Oshima and T. Matsuki, A description of discrete series for semisimple symmetric spaces, In: Group Representations and Systems of Differential Equations, Adv. Stud. Pure Math., 4, 1984, pp. 331–390

  122. T. Oshima and T. Matsuki, A description of discrete series for semisimple symmetric spaces, In: Group Representations and Systems of Differential Equations, Adv. Stud. Pure Math., 4, 1984, pp. 331–390

  123. E. Pedon, Harmonic analysis for differential forms on complex hyperbolic spaces, J. Geom. Phys., 32 (1999), 102–130

    Article  MATH  MathSciNet  Google Scholar 

  124. J. Peetre, Hankel forms of arbitrary weight over a symmetric domain via the transvectant, Rocky Mountain J. Math., 24 (1994), 1065–1085

    Article  MATH  MathSciNet  Google Scholar 

  125. L. Peng, and G. Zhang, Tensor products of holomorphic representations and bilinear differential operators, J. Funct. Anal., 210 (2004), 171–192

    Article  MATH  MathSciNet  Google Scholar 

  126. M. Pevzner, Espace de Bergman d’un semi-groupe complexe, C. R. Acad. Sci. Paris Sér. I Math., 322(1996), 635–640

    MathSciNet  Google Scholar 

  127. M. Pevzner, Analyse conforme sur les algèbres de Jordan, Ph.D. thesis, Univ. of Paris VI, 1998.

  128. M. Pevzner, Représentation de Weil associée à une représentation d’une algèbre de Jordan, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 463–468

    MATH  MathSciNet  Google Scholar 

  129. M. Pevzner, Analyse conforme sur les algèbres de Jordan, J. Aust. Math. Soc., 73 (2002), 279–299

    Article  MATH  MathSciNet  Google Scholar 

  130. M. Pevzner and Ch. Torossian, Isomorphisme de Duflo et la cohomologie tangentielle, J. Geom. Phys., 51 (2004), 486–505.

    Article  MATH  MathSciNet  Google Scholar 

  131. M. Pevzner and A. Unterberger, Projective pseudodifferential analysis and harmonic analysis, J. Funct. Anal., 242 (2007), 442–485

    Article  MATH  MathSciNet  Google Scholar 

  132. M. Pevzner, Rankin–Cohen brackets and associativity, Lett. Math. Phys., 85 (2008), 195–202

    Article  MathSciNet  MATH  Google Scholar 

  133. J. Repka, Tensor products of holomorphic discrete series representations, Canad. J. Math., 31 (1979), 836–844

    MATH  MathSciNet  Google Scholar 

  134. F. Rouvière, Invariant analysis and contractions of symmetric spaces. I, Compositio Math., 73 (1990), 241–270; II, Compositio Math., 80 (1991), 11–136.

  135. F. Rouvière, Fibrés en droites sur un espace symétrique et analyse invariante, J. Funct. Anal., 124 (1994), 263–291

    Article  MATH  MathSciNet  Google Scholar 

  136. H. Rubenthaler, Une série dégénérée de représentations de \(SL_n({\mathbb{R}})\), Lecture Notes in Math., 739 (1979), 427–459

    Article  MathSciNet  Google Scholar 

  137. S. Sahi, The Capelli identity and unitary representations, Compositio Math., 81 (1992), 247–260

    MATH  MathSciNet  Google Scholar 

  138. S. Sahi, Explicit Hilbert spaces for certain unipotent representations, Invent. Math., 110 (1992), 409–418

    Article  MATH  MathSciNet  Google Scholar 

  139. S. Sahi, Unitary representations on the Shilov boundary of a symmetric tube domain, In: Representation Theory of Groups and Algebras, Contemp. Math., 145, Amer. Math. Soc., Providence, RI, 1993, pp. 275–286.

  140. S. Sahi, Jordan algebras and degenerate principal series, J. Reine Angew. Math., 462 (1995), 1–18

    MATH  MathSciNet  Google Scholar 

  141. S. Sahi and E.M. Stein, Analysis in matrix space and Speh’s representations, Invent. Math., 101 (1990), 379–393

    Article  MATH  MathSciNet  Google Scholar 

  142. I. Satake, Algebraic Structures of Symmetric Domains, Iwanami Shoten; Princeton Univ. Press, 1980.

  143. M. Schlichenmaier, Berezin–Toeplitz quantization and Berezin transform, In: Long Time Behaviour of Classical and Quantum Systems, Proceedings of the Bologna APTEX international conference, Bologna, (ed. S. Graffi), Ser. Concr. Appl. Math., 1, World Sci. Publ., Singapore, 2001, pp. 271–287.

  144. W. Schmid, Construction and classification of irreducible Harish-Chandra modules, In: Harmonic Analysis on Reductive Groups, Brunswick, ME, 1989, Progr. Math., 101, Birkhäuser Boston, Boston, MA, 1991, pp. 235–275.

  145. L. Schwartz, Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés, J. Analyse Math., 13 (1964), 115–256

    Article  MATH  MathSciNet  Google Scholar 

  146. H. Seppänen, Branching laws for minimal holomorphic representations, J. Funct. Anal., 251 (2007), 174–209

    Article  MATH  MathSciNet  Google Scholar 

  147. B. Shoikhet, On the Duflo formula for L -algebras and Q-manifolds, e-print, QA/9812009.

  148. M.A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 2001.

    MATH  Google Scholar 

  149. R.S. Strichartz, Harmonic analysis on hyperboloids, J. Functional Analysis, 12 (1973), 341–383

    Article  MATH  MathSciNet  Google Scholar 

  150. E.G.F. Thomas, The theorem of Bochner–Schwartz–Godement for generalised Gelfand pairs, In: Functional Analysis: Surveys and Recent Results. III, Paderborn, 1983, North-Holland Math. Stud., 90, 1984, pp. 291–304.

  151. E.G.F. Thomas, Integral representations in conuclear cones, J. Convex Anal., 1 (1994), 225–258

    MATH  MathSciNet  Google Scholar 

  152. P. Torasso, Méthode des orbites de Kirillov–Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle,Duke Math. J., 90 (1997), 261–377

    Article  MATH  MathSciNet  Google Scholar 

  153. Ch. Torossian, Opérateurs différentiels invariants sur les espaces symétriques. I. Méthodes des orbites, J. Funct. Anal., 117 (1993), 118–173

    Article  MATH  MathSciNet  Google Scholar 

  154. Ch. Torossian, Opérateurs différentiels invariants sur les espaces symétriques. II. L’homomorphisme de Harish-Chandra généralisé, J. Funct. Anal., 117 (1993), 174–214

    Article  MATH  MathSciNet  Google Scholar 

  155. Ch. Torossian, Sur la conjecture combinatoire de Kashiwara–Vergne, J. Lie Theory, 12 (2002), 597–616

    MATH  MathSciNet  Google Scholar 

  156. Ch. Torossian, Méthodes de Kashiwara–Verge–Rouvière pour les espaces symétriques, In: Noncommutative Harmonic Analysis, Progr. Math., 220, Birkhäuser Boston, Boston, MA, 2004, pp. 459–486.

  157. F. Trèves, Introduction to Pseudodifferential and Fourier Integral Operators. Vol. 1, Pseudodifferential operators, The University Series in Mathematics, Plenum Press, New York-London, 1980.

  158. A. Unterberger, Quantization and Non-holomorphic Modular Forms, Lecture Notes in Math., 1742, Springer-Verlag, Berlin, 2000.

  159. A. Unterberger and J. Unterberger, La série discrète de \({\rm SL}(2, {\mathbb {R}})\) et les opérateurs pseudo-différentiels sur une demi-droite, Ann. Sci. École Norm. Sup. (4), 17 (1984), 83–116

    MATH  MathSciNet  Google Scholar 

  160. A. Unterberger and J. Unterberger, Quantification et analyse pseudo-différentielle, Ann. Sci. École Norm. Sup. (4), 21 (1988), 133–158

    MATH  MathSciNet  Google Scholar 

  161. A. Unterberger and J. Unterberger, Algebras of symbols and modular forms, J. Anal. Math., 68 (1996), 121–143

    Article  MATH  MathSciNet  Google Scholar 

  162. A. Unterberger and H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys., 164 (1994), 563–597

    Article  MATH  MathSciNet  Google Scholar 

  163. A.M. Vershik, I.M. Gelfand and M.I. Graev, Representations of the group SL(2, R), where R is a ring of functions, Uspehi Mat. Nauk, 28 (1973), 83–128

    Google Scholar 

  164. E.B. Vinberg, Invariant convex cones and orderings in Lie groups, Funct. Anal. Appl., 14 (1980), 1–13

    MATH  MathSciNet  Google Scholar 

  165. A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math., 111 (1964), 143–211

    Article  MATH  MathSciNet  Google Scholar 

  166. H. Weyl, Gruppentheorie und Quantenmechanik, 2nd ed., S. Hirzel Verlag, Leipzig, 1931.

  167. D. Zagier, Introduction to modular forms, In: From Number Theory to Physics, (eds. W. Waldschmidt, P. Moussa, J.-M. Luck and C. Itzykson), Springer-Verlag, Berlin, 1992, pp. 238–291.

  168. D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci., 104 (1994), 57–75

    Article  MATH  MathSciNet  Google Scholar 

  169. G. Zhang, Jordan algebras and generalized principal series representations, Math. Ann., 302 (1995), 773–786

    Article  MATH  MathSciNet  Google Scholar 

  170. G. Zhang, Berezin transform on compact Hermitian symmetric spaces, Manuscripta Math., 97 (1998), 371–388

    Article  MATH  MathSciNet  Google Scholar 

  171. G. Zhang, Berezin transform on real bounded symmetric domains, Trans. Amer. Math. Soc., 353 (2001), 3769–3787

    Article  MATH  MathSciNet  Google Scholar 

  172. G. Zhang, Branching coefficients of holomorphic representations and Segal–Bargmann transform, J. Funct. Anal., 195 (2002), 306–349

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Pevzner.

About this article

Cite this article

Pevzner, M. Covariant quantization: spectral analysis versus deformation theory. Jpn. J. Math. 3, 247–290 (2008). https://doi.org/10.1007/s11537-008-0831-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-008-0831-7

Keywords and phrases:

Mathematics Subject Classification (2000):

Navigation