Skip to main content
Log in

Some penalisations of the Wiener measure

  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract.

A number of limit laws, which are obtained from various penalisations of the Wiener measure on \(C \left(\mathbb{R}_{+}, \mathbb{R}^{d}\right),\) are shown to exist, and are described thoroughly, with the help of path decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Azéma and M. Yor, Une solution simple au probléme de Skorokhod, Sém. Prob. XIII, Lecture Notes in Math., 721, Springer, 1979, pp. 90–115.

  2. R. Banuelos and R.G. Smits, Brownian motion in cones, Probab. Theory Related Fields, 108 (1997), 299–319.

    MathSciNet  Google Scholar 

  3. M. Berger, P. Gauduchon and E. Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Math., 194, Springer, 1971.

  4. V. Betz, Existence of Gibbs measures relative to Brownian motion, In: Markov Processes and Related Fields, 2003, 9, pp. 85–102.

  5. V. Betz and J. Lörinzci, Uniqueness of Gibbs measures relative to Brownian motion, Ann. Inst. H. Poincaré Probab. Statist., 39 (2003), 877–889.

    Google Scholar 

  6. Borodin A., Salminen P.,Handbook of Brownian Motion. Facts and Formulae, Second edition, Birkhäuser, 2002.

  7. S.F. Edwards, The statistical mechanics of polymers with excluded volume, Proc. Phys. Soc., 85 (1965), 613–614.

    MATH  MathSciNet  Google Scholar 

  8. van der Hofstadt R., One-Dimensional Random Polymers, Thesis monograph, 1997.

  9. K. Itô and H.P. McKean, Diffusion Processes and Their Sample Paths, Springer, 1965.

  10. N.N. Lebedev, Special Functions and Their Applications, Dover, 1972.

  11. J.F. Le Gall, Sur le temps local d’intersection du mouvement brownien plan, et la méthode de renormalisation de Varadhan, Sém. Prob. XIX, Lecture Notes in Math., 1123, Springer, 1985, pp. 314–331.

  12. J.F. Le Gall, Some properties of planar Brownian motion, Ecole d’Eté Saint-Flour XX, 1990, Lecture Notes in Math., 1527, Springer, 1992, pp. 112–234.

  13. P.A. Meyer, Probabilités et Potentiel, Publ. Inst. Rech. Math. Av., Hermann, Paris, 1966.

    Google Scholar 

  14. J. Najnudel, Pénalisations de l’araignée brownienne (submitted to Ann. Inst. Fourier, 2005).

  15. H. Osada and H. Spohn, Gibbs measures relative to Brownian motion, Ann. Probab., 27 (1999), 1183–1207.

    MathSciNet  Google Scholar 

  16. J. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process, Adv. Appl. Probab., 7(1975), 511-526.

    MATH  MathSciNet  Google Scholar 

  17. J. Pitman and M. Yor, Asymptotic laws of planar Brownian motion, Ann. Probab., 14 (1986), 733–779.

    MathSciNet  Google Scholar 

  18. J. Pitman and M. Yor, Further asymptotic laws of planar Brownian motion, Ann. Probab., 17 (1989), 965–1011.

    MathSciNet  Google Scholar 

  19. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, third edition, 1999.

  20. L. Rogers, Characterizing all diffusions with the 2M-X property, Ann. Probab., 9 (1981), 561–672.

    MATH  MathSciNet  Google Scholar 

  21. B. Roynette, P. Vallois and M. Yor, Limiting laws for long Brownian bridges perturbated by their one-sided maximum III, Periodica Math. Hung., 50 (2005), 247–280.

    MathSciNet  Google Scholar 

  22. B. Roynette, P. Vallois and M. Yor, Limiting laws associated with Brownian motion perturbed by normalized exponential weights, Stud. Math. Hung., to appear in March 2006.

  23. B. Roynette, P. Vallois and M. Yor, Complements to [RVY2], in preparation (2006).

  24. B. Roynette, P. Vallois and M. Yor, Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time II, Stud. Math. Hung., to appear in 2006.

  25. B. Roynette, P. Vallois and M. Yor, Some extensions of Pitman and Ray–Knight theorems for penalized Brownian motions and their local times IV, Stud. Math. Hung., to appear in 2006.

  26. B. Roynette, P. Vallois and M. Yor, Penalizing a Bes(d) process (0<d<2) with a function of its local time at 0, V, submitted to Stud. Math. Hung. in 2005.

  27. B. Roynette, P. Vallois and M. Yor, Penalisations of multidimensional Brownian motion, VI, submitted to Stud. Math. Hung. in 2005.

  28. B. Roynette, P. Vallois and M. Yor, Penalizing a Brownian motion with a function of the lengths of its excursions, VII, in preparation.

  29. F. Spitzer, Some theorems about 2-dimensional Brownian motion, Trans. Amer. Math. Soc., 87 (1958), 187–197.

    MATH  MathSciNet  Google Scholar 

  30. J. Westwater, On Edwards model for long polymer chains, Comm. Math. Phys., 72 (1980), 131–174.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Westwater, On Edwards model for long polymer chains, II. The self-consistent potential, Comm. Math. Phys., 79 (1981), 53–73.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Westwater, On Edwards model for long polymer chains, In: Trends and Developments in the Eighties, (eds. S. Albeverio and P. Blanchard), Bielefeld Encounters in Math. Phys., 4/5, World Scientific, Singapore, 1984.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yor.

Additional information

Communicated by: Toshiyuki Kobayashi

About this article

Cite this article

Roynette, B., Vallois, P. & Yor, M. Some penalisations of the Wiener measure. Jpn. J. Math. 1, 263–290 (2006). https://doi.org/10.1007/s11537-006-0507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-006-0507-0

Keywords and phrases.

Mathematics Subject Classification (2000).

Navigation