Skip to main content
Log in

Spin-dependent transport through magnetic nanojunctions

  • Published:
Central European Journal of Physics

Abstract

Coherent electronic transport through a molecular device is studied using non-equilibrium Green's function (NEGF) formalism. Such device is made of atomic nanowire which is connected to ferromagnetic electrodes. The molecule itself is described with the help of Hubbard model (Coulomb interactions are treated by means of the Hartree-Fock approximation), while the coupling to the electrodes is modeled through the use of a broad-band theory. It was shown that magnetoresistance varies periodically with increasing length of the atomic wire (in the linear response regime) and oscillates with increasing bias voltage (in the nonlinear response regime). Since the TMR effect for analyzed structures is predicted to be large (tens of percent), these junctions seem to be suitable for application as magnetoresistive elements in future electronic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Metzger: “Electrical rectification by a molecule: the advent of unimolecular electronic devices”, Acc. Chem. Res., Vol. 32, (1999), pp. 950–957.

    Article  Google Scholar 

  2. J. Chen, M.A. Reed, A.M. Rawlett, and J.M. Tour: “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device”, Science, Vol. 286, (1999), pp. 1550–1552.

    Article  Google Scholar 

  3. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, and J.M. Tour: “Molecular random access memory cell”, Appl. Phys. Lett., Vol. 78, (2001), pp. 3735–3737.

    Article  ADS  Google Scholar 

  4. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruńa, P.L. McEuen, and D.C. Ralph: “Coulomb blockade and the Kondo effect in single-atom transistor”, Nature (London), Vol. 417, (2002), pp. 722–725.

    Article  ADS  Google Scholar 

  5. G.A. Prinz: “Magnetoelectronics”, Science, Vol. 282, (1998), pp. 1660–1663.

    Article  Google Scholar 

  6. I. Žutić, J. Fabian, and S. Das Sarma: “Spintronics: Fundamentals and Applications”, Rev. Mod. Phys., Vol. 76, (2004), pp. 323–411.

    Article  ADS  Google Scholar 

  7. N. Garcia, M. Munoz, and Y.-W. Zhao: “Magnetoresistance in excess of 200 % in Ballistic Ni Nanocontacts at Room Temperature and 100 Oe“, Phys. Rev. Lett., Vol. 82, (1999), pp. 2923–2926.

    Article  ADS  Google Scholar 

  8. H. Imamura, N. Kobayashi, S. Takahashi, and S. Maekawa: “Conductance Quantization and Magnetoresistance in Magnetic Point Contacts”, Phys. Rev. Lett., Vol. 84, (2000), pp. 1003–1006.

    Article  ADS  Google Scholar 

  9. E.G. Emberly, and G. Kirczenow: “Molecular spintronics: spin-dependent molecular transport in molecular wires”, Chem. Phys., Vol. 281, (2002), pp. 311–324.

    Article  Google Scholar 

  10. M. Zwolak, and M. Di Ventra: “DNA Spintronics”, Appl. Phys. Lett., Vol. 81, (2002), pp. 925–927.

    Article  ADS  Google Scholar 

  11. W.I. Babiaczyk, and B.R. Bułka: “Coherent electronic transport through single molecules: Negative differential resistance and magnetoresistance effects”, Phys. Stat. Sol. (a), Vol. 196, (2003), pp. 169–172.

    Article  Google Scholar 

  12. W.I. Babiaczyk, and B.R. Bułka: “Electronic transport in molecular systems with para-and ferromagnetic leads”, J. Phys.: Condens. Matter, Vol. 16, (2004), pp. 4001–4012.

    Article  ADS  Google Scholar 

  13. K. Walczak: “Nonlinear transport through a finite Hubbard chain connected to the electrodes”, Physica B, Vol. 365, (2005), pp. 193–200.

    Article  ADS  MathSciNet  Google Scholar 

  14. J.R. Petta, S.K. Slater, and D.C. Ralph: “Spin-Dependent Transport in Molecular Tunnel Junctions”, Phys. Rev. Lett., Vol. 93, (2004), pp. 136601.

    Article  ADS  Google Scholar 

  15. G. Roth, and H. Fischer: “On the Way to Heptahexaenylidene Complexes: Trapping of an Intermediate with the Novel M=C=C=C=C=C=C=CR2 Moiety”, Organometallics, Vol. 15, (1996), pp. 5766–5768.

    Article  Google Scholar 

  16. N.D. Lang, and Ph. Avouris: “Oscillatory Conductance of Carbon-Atom Wires”, Phys. Rev. Lett., Vol. 81, (1998), pp. 3515–3518.

    Article  ADS  Google Scholar 

  17. N.D. Lang, and Ph. Avouris: “Carbon-Atom Wires: Charge-Transfer Doping, Voltage Drop, and the Effect of Distortions”, Phys. Rev. Lett., Vol. 84, (2000), pp. 358–361.

    Article  ADS  Google Scholar 

  18. K. Raghavachari, and J.S. Binkley: “Structure, stability, and fragmentation of small carbon clusters”, J. Chem. Phys., Vol. 87, (1987), pp. 2191–2197.

    Article  ADS  Google Scholar 

  19. L. Lou, and P. Nordlander: “Carbon atomic chains in strong electric fields”, Phys. Rev. B, Vol. 54, (1996), pp. 16659–16662.

    Article  ADS  Google Scholar 

  20. V. Mujica, M. Kemp, A. Roitberg, and M. Ratner: “Current-voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification”, J. Chem. Phys., Vol. 104, (1996), pp. 7296–7305.

    Article  ADS  Google Scholar 

  21. T. Kostyrko, and B. R. Bułka: “Hubbard model approach for the transport properties of short molecular chains”, Phys. Rev. B, Vol. 67, (2003), pp. 205331.

    Article  ADS  Google Scholar 

  22. W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak: “Conductance spectra of molecular wires”, J. Chem. Phys., Vol. 109, (1998), pp. 2874–2882.

    Article  ADS  Google Scholar 

  23. H. Haug, and A.-P. Jauho: “Quantum Kinetics in Transport and Optics of Semiconductors”, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  24. S.T. Pantelides, M. Di Ventra, and N.D. Lang: „Molecular electronics by the numbers“, Physica B, Vol. 296, (2001), pp. 72–77.

    Article  ADS  Google Scholar 

  25. A. Di Carlo, M. Gheorghe, P. Lugli, M. Sternberg, G. Seifert, and T. Frauenheim: „Theoretical tools for transport in molecular nanostructures“, Physica B, Vol. 314, (2002), pp. 86–90.

    Article  ADS  Google Scholar 

  26. I.I. Mazin: “How to Define and Calculate the Degree of Spin Polarization in Ferro-magnets”, Phys. Rev. Lett., Vol. 83, (1999), pp. 1427–1430.

    Article  ADS  Google Scholar 

  27. Y. Meir, and N.S. Wingreen: “Landauer formula for the current through an interacting electron region”, Phys. Rev. Lett., Vol. 68, (1992), pp. 2512–2515.

    Article  ADS  Google Scholar 

  28. A. Oguri: „Transmission probability through small interacting systems: application to a series of quantum dots“, Physica E, Vol. 18, (2003), pp. 81–82.

    ADS  Google Scholar 

  29. P.F. Bagwell, and T.P. Orlando: “Landauer's conductance formula and its generalization to finite voltages”, Phys. Rev. B, Vol. 40, (1989), pp. 1456–1464.

    Article  ADS  Google Scholar 

  30. W. Tian, and S. Datta: “Aharonov-Bohm-type Effect in grapheme tubules: A Landauer approach”, Phys. Rev. B, Vol. 49, (1994), pp. 5097–5100.

    Article  ADS  Google Scholar 

  31. M. Magoga, and C. Joachim: “Conductance and transparence of long molecular wires”, Phys. Rev. B, Vol. 56, (1997), pp. 4722–4729.

    Article  ADS  Google Scholar 

  32. M. Magoga, and C. Joachim: “Minimal attenuation for tunneling through a molecular wire”, Phys. Rev. B, Vol. 57, (1998), pp. 1820–1823.

    Article  ADS  Google Scholar 

  33. M. Di Ventra, S.T. Pantelides, and N.D. Lang: “First-Principles Calculation of Transport Properties of a Molecular Device”, Phys. Rev. Lett., Vol. 84, (2000), pp. 979–982.

    Article  ADS  Google Scholar 

  34. M. Di Ventra, N.D. Lang, and S.T. Pantelides: “Electronic transport in single molecules”, Chem. Phys., Vol. 281, (2002), pp. 189–198.

    Article  Google Scholar 

  35. P.W. Anderson, D.J. Thouless, E. Abrahams, and D.S. Fisher: “New method for a scaling theory of localization”, Phys. Rev. B, Vol. 22, (1980), pp. 3519–3526.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Walczak, K., Platero, G. Spin-dependent transport through magnetic nanojunctions. centr.eur.j.phys. 4, 30–41 (2006). https://doi.org/10.1007/s11534-005-0004-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11534-005-0004-8

Keywords

PACS (2006)

Navigation