Skip to main content
Log in

Coulomb blockade in molecular quantum dots

  • Published:
Central European Journal of Physics

Abstract

The rate-equation approach is used to describe sequential tunneling through a molecular junction in the Coulomb blockade regime. Such device is composed of molecular quantum dot (with discrete energy levels) coupled with two metallic electrodes via potential barriers. Based on this model, we calculate nonlinear transport characteristics (conductance-voltage and current-voltage dependences) and compare them with the results obtained within a self-consistent field approach. It is shown that the shape of transport characteristics is determined by the combined effect of the electronic structure of molecular quantum dots and by the Coulomb blockade. In particular, the following phenomena are discussed in detail: the suppression of the current at higher voltages, the charging-induced rectification effect, the charging-generated changes of conductance gap and the temperature-induced as well as broadening-generated smoothing of current steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Joachim, J.K. Gimzewski and A. Aviram: “Electronics using hybrid-molecular and mono-molecular devices”, Nature (London), Vol. 408, (2000), pp. 541–548.

    Article  ADS  Google Scholar 

  2. A. Nitzan and M.A. Ratner: “Electron transport in molecular wire junctions”, Science, (2003), Vol. 300, pp. 1384–1389.

    Article  ADS  Google Scholar 

  3. J.R. Heath and M.A. Ratner: “Molecular electronics”, Phys. Today, Vol. 56, (2003), pp. 43–49.

    Google Scholar 

  4. A.W. Ghosh, P.S. Damle, S. Datta and A. Nitzan: “Molecular electronics: theory and device prospects”, MRS Bull., Vol. 29, (2004), pp. 391–395.

    Google Scholar 

  5. C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones II and J.M. Tour: “Nanoscale metal/self-assembled monolayer/metal heterostructures”, Appl. Phys. Lett., Vol. 71, (1997), pp. 611–613.

    Article  ADS  Google Scholar 

  6. M.A. Reed, C. Zhou, M.R. Deshpande, C.J. Muller, T.P. Burgin, L. Jones II and J.M. Tour: “The electrical measurement of molecular junctions”, Ann. N.Y. Acad. Sci., Vol. 852, (1998), pp. 133–144.

    Article  Google Scholar 

  7. C. Kergueris, J.-P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga and C. Joachim: “Electron transport through a metal/molecule/metal junction”, Phys. Rev. B, Vol. 59, (1999), pp. 12505–12513.

    Article  ADS  Google Scholar 

  8. R.M. Metzger: “Electrical rectification by a molecule: the advent of unimolecular electronic devices”, Acc. Chem. Res., Vol. 32, (1999), pp. 950–957.

    Article  Google Scholar 

  9. M.A. Reed: “Molecular-scale electronics”, Proc. IEEE, Vol. 87, (1999), pp. 652–658.

    Article  Google Scholar 

  10. M. Burghard, C. Mueller-Schwanneke, G. Philipp and S. Roth: “Coulomb blockade phenomena in ultrathin Langmuir-Blodgett sandwich junctions”, J. Phys.: Condens. Matter, Vol. 11, (1999), pp. 2993–3002.

    Article  ADS  Google Scholar 

  11. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen and D.C. Ralph: “Coulomb blockade and the Kondo effect in single-atom transistors”, Nature (London), Vol. 417, (2002), pp. 722–725.

    Article  ADS  Google Scholar 

  12. K. Walczak: “Charging effects in biased molecular devices”, Physica E, Vol. 25, (2005), pp. 530–534.

    Article  ADS  MathSciNet  Google Scholar 

  13. M.M. Deshmukh, E. Bonet, A.N. Pasupathy and D.C. Ralph: “Equilibrium and nonequilibrium electron tunneling via discrete quantum states”, Phys. Rev. B, Vol. 65, (2002), pp. 073301.

    Google Scholar 

  14. C.W.J. Beenakker: “Theory of Coulomb blockade oscillations in the conductance of a quantum dot”, Phys. Rev. B, Vol. 44, (1991), pp. 1646–1656.

    Article  ADS  Google Scholar 

  15. D.V. Averin, A.N. Korotkov and K.K. Likharev: “Theory of single-electron charging of quantum wells and dots”, Phys. Rev. B, Vol. 44, (1991), pp. 6199–6211.

    Article  ADS  Google Scholar 

  16. J. von Delft and D.C. Ralph: “Spectroscopy of discrete energy levels in ultrasmall metallic grains”, Phys. Rep., Vol. 345, (2001), pp. 61–173.

    Article  ADS  Google Scholar 

  17. E. Bonet, M.M. Deshmukh and D.C. Ralph: “Solving rate equations for electron tunneling via discrete quantum states”, Phys. Rev. B, Vol. 65, (2002), pp. 045317.

    Google Scholar 

  18. S. Datta: “Electrical resistance: an atomistic view”, Nanotechnology, Vol. 15, (2004), pp. S433–S451; Appendix A.

    Article  ADS  Google Scholar 

  19. G. Roth and H. Fischer: “On the way to heptahexaenylidene complexes: trapping of an intermediate with the novel M=C=C=C=C=C=C=CR2 moiety”, Organometallics, Vol. 15, (1996), pp. 5766–5768.

    Article  Google Scholar 

  20. N.D. Lang and Ph. Avouris: “Carbon-atom wires: charge-transfer doping, voltage drop, and the effect of distortions”, Phys. Rev. Lett., Vol. 84, (2000), pp. 358–361.

    Article  ADS  Google Scholar 

  21. M. Di Ventra, S.T. Pantelides and N.D. Lang: “First-principles calculations of transport properties of a molecular device”, Phys. Rev. Lett., Vol. 84, (2000), pp. 979–982.

    Article  ADS  Google Scholar 

  22. A.S. Alexandrov, A.M. Bratkovsky and R.S. Williams: “Bistable tunneling current through a molecular quantum dot”, Phys. Rev. B, Vol. 67, (2003), pp. 075301.

    Google Scholar 

  23. J.A. Wilson: “Developments in the negative U-modelling of the cuprate HTSC systems”, J. Phys.: Condens. Matter, Vol. 13, (2001), pp. R945–R977.

    Article  ADS  Google Scholar 

  24. K. Walczak: “Nonlinear transport through a finite Hubbard chain connected to the electrodes”, Physica B, Vol. 365, (2005), pp. 193–200.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Walczak, K. Coulomb blockade in molecular quantum dots. centr.eur.j.phys. 4, 8–19 (2006). https://doi.org/10.1007/s11534-005-0002-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11534-005-0002-x

Keywords

PACS (2006)

Navigation