Skip to main content
Log in

Mimicking catalase and catecholase enzymes by copper(II)-containing complexes

  • Published:
Central European Journal of Chemistry

Abstract

An imidazolate-bridged copper(II)-zinc(II) complex (Cu(II)-diethylenetriamino-μ-imidazolato-Zn(II)-tris(2-aminoethyl)amine perchlorate (denoted as “Cu,Zn complex”) and a simple copper(II) complex (Cu(II)-tris(2-aminoethyl) amine chloride (“Cu-tren”) were prepared and immobilised on silica gel (by hydrogen or covalent bonds) and montmorillonite (by ion exchange). The immobilised substances were characterised by FT-IR spectroscopy and their thermal characteristics were also studied. The obtained materials were tested in two probe reactions: catalytic oxidation of 3,5-di-tert-butyl catechol (DTBC) (catecholase activity) and the decomposition of hydrogen peroxide (catalase activity). It was found that the catecholase activity of the Cu,Zn complex increased considerably upon immobilization on silica gel via hydrogen bonds and intercalation by ion exchange among the layers of montmorillonite. The imidazolate-bridged copper(II)-zinc(II) complex and its immobilised versions were inactive in hydrogen peroxide decomposition. The Cu(II)-tris(2-aminoethyl)amine chloride complex displayed good catalase activity; however, immobilisation could not improve it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.M. Weckhuysen, A.A. Verberckmoes, I.P. Vannijvel, J.A. Pelgrims, P.L. Buskens, P.A. Jacobs and R.A. Schoonheydt: “Zeolite encaged Cu(Histidine) complexes as mimics of natural Cu enzymes”, Angew. Chem. Int. Ed. Engl., Vol. 34, (1995), pp. 2652–2654.

    Article  CAS  Google Scholar 

  2. M.R. Maurya, S.J.J. Titinchi, S. Chand and I.M. Mishra: “Zeolite-encapsulated Cr(III), Fe(III), Ni(II), Zn(II) and Bi(III) salpn complexes as catalysts for the decomposition of H2O2 and oxidation of phenol”, J. Mol. Catal. A Chem., Vol. 180, (2002), pp. 201–209.

    Article  CAS  Google Scholar 

  3. S. Deshpande, D. Srinivas and P. Ratnasamy: “EPR and catalytic investigation of Cu(salen) complexes encapsulated in zeolites”, J. Catal., Vol. 188, (1999), pp. 261–269.

    Article  CAS  Google Scholar 

  4. B.M. Weckhuysen, A.A. Verberckmoes, L. Fu and R.A. Schoonheydt: “Zeoliteencapsulated copper(II) amino acid complexes: Synthesis, spectroscopy and catalysis”, J. Phys. Chem., Vol. 100, (1996), pp. 9456–9461.

    Article  CAS  Google Scholar 

  5. I. Szilágyi, G. Nagy, K. Hernadi, I. Labádi and I. Pálinkó: “Modelling coppercontaining enzyme mimics”, J. Mol. Struct. Theochem, Vol. 666, (2003), pp. 451–453.

    Article  CAS  Google Scholar 

  6. V.V. Barynin, M.M. Whittaker, S.V. Antonyuk, V.S. Lamzin, P.M. Harrison, P.J. Artymiuk and J.W. Whittaker: “Crystal structure of manganese catalase from Lactobacillus plantarum”, Structure, Vol. 9, (2001), pp. 725–738.

    Article  CAS  Google Scholar 

  7. A.J. Wu, J.E. Penner-Hahn and V.L. Pecoraro: “Structural, spectroscopic, and reactivity models for the manganese catalases”, Chem. Rev., Vol. 104, (2004), pp. 903–938.

    Article  CAS  Google Scholar 

  8. J. Gao and S.H. Zhong: “Dimanganase(II)-catalase-like model complexes: synthesis, structure characterization and catalytic mechanism”, J. Mol. Catal. A Chem., Vol. 186, (2002), pp. 25–32.

    Article  CAS  Google Scholar 

  9. Y. Sasaki, T. Akamatsu, K. Tsuchiya, S. Ohba, M. Sakamoto and Y. Nishida: “Solvent and structural effects on catalase-like function of binuclear manganese(II) compounds with μ-phenoxide bridge”, Polyhedron, Vol. 14, (1998), pp. 235–242.

    Article  Google Scholar 

  10. E. Horozova and N. Dimcheva: “Study of catalase immobilized on a silicate matrix for non-aqueous biocatalysis”, Cent. Eur. J. Chem., Vol. 3, (2005), pp. 279–287.

    CAS  Google Scholar 

  11. J. Gao, A.E. Martell and R.J. Motekaitis: “Novel macrocyclic heterodinuclear catalase-like model complex CuMnL and CuZnL (L=BDBPH): synthesis, stability and catalytic properties”, Inorg. Chim. Acta, Vol. 325, (2001), pp. 164–170.

    Article  CAS  Google Scholar 

  12. J. Gao, J. Reibenspies, A.E. Martell, S. Yizhen and D. Chen: “The first macrocyclic layer-to-layer type tetranuclear copper(II) complex: structure, stability and unprecedented catalase-like activity”, Inorg. Chem. Commun., Vol. 5, (2002), pp. 1095–1098.

    Article  CAS  Google Scholar 

  13. J. Gao, A.E. Martell and J.H. Reibenspies: “Novel dicopper(II) catalase-like model complexes: synthesis, crystal structure, properties and kinetic studies”, Inorg. Chim. Acta, Vol. 346, (2003), pp. 32–42.

    Article  CAS  Google Scholar 

  14. C. Belle and J.-L. Pierre: “Asymmetry in bridged binuclear metalloenzymes: lessons for the chemist”, Eur. J. Inorg. Chem., (2003), pp. 4137-4146.

  15. D.A. Rockcliffe and A.E. Martell: “Stoichiometric and catalytic oxidations by dinuclear copper(I) and copper(II) complexes of a Schiff base ligand derived from the 2:2 condensation of pyridine 2,6-dicarboxaldehyde and 1,5,9-triazanonane”, J. Mol. Catal. A Chem., Vol. 106, (1996), pp. 211–221.

    Article  CAS  Google Scholar 

  16. F. Zippel, F. Ahlers, R. Werner, W. Haase, H.-F. Nolting and B. Krebs: “Structural and functional models for the dinuclear active site in catechol oxidases: synthesis, X-ray crystal structures, magnetic and spectral properties, and X-ray absorption spectroscopic studies in solid state and in solution”, Inorg. Chem., Vol. 35, (1996), pp. 3409–3419.

    Article  CAS  Google Scholar 

  17. J. Reim and B. Krebs: “Synthesis, structure and catecholase activity study of dinuclear copper(II) complexes”, J. Chem. Soc. Dalton Trans., (1997), pp. 3793-3804.

  18. E. Monzani, G. Battaini, A. Perotti, L. Casella, M. Gullotti, L. Santagostini, G. Nardin, L. Randaccio, S. Geremia, P. Zanello and G. Opromolla: “Mechanistic, structural, and spectroscopic studies on the catecholase activity of a dinuclear copper complex by dioxygen”, Inorg. Chem., Vol. 38, (1999), pp. 5359–938.

    Article  CAS  Google Scholar 

  19. R. Wegner, M. Gottschaldt, H. Görls, E.-G. Jager and D. Klemm: “Copper(II) complexes of aminocarbohydrate ß-ketoenaminic ligands: efficient catalysts in catechol oxidation”, Chem. Eur. J., Vol. 7, (2001), pp. 2143–2157.

    Article  CAS  Google Scholar 

  20. J. Kaizer, J. Papp, G. Speier, L. Párkányi, L. Korecz and A. Rockenbauer: “Synthesis, structure and catecholase activity of dinuclear copper and zinc complexes with an N3-ligand”, J. Inorg. Biochem., Vol. 91, (2002), pp. 190–198.

    Article  CAS  Google Scholar 

  21. M.C. Mimmi, M. Gullotti, L. Santagostini, A. Saladino, L. Casella, E. Monzani and R. Pagliarin: “Stereoselective catalytic oxidations of biomimetic copper complexes with a chiral trinucleating ligand derived from 1,1-binaphthalene”, J. Mol. Catal. A Chem., Vol. 204-205, (2003), pp. 381–389.

    Article  CAS  Google Scholar 

  22. A. Naidja, P.M. Huang and J.-M. Bollag: “Activity of tyrosinase immobilized on hydroxyaluminium-montmorillonite complexes”, J. Mol. Catal. A Chem., Vol. 115, (1997), pp. 305–316.

    Article  CAS  Google Scholar 

  23. M. Louloudi, K. Mitopoulou, E. Evaggelou, Y. Deligiannakis and N. Hadjiliadis: “Homogeneous and hydrogenised copper(II) complexes as catechol oxidation catalysts”, J. Mol. Catal. A Chem., Vol. 198, (2003), pp. 231–240.

    Article  CAS  Google Scholar 

  24. I. Szilágyi, I. Labádi, K. Hernadi, I. Pálinkó, N.V. Nagy, L. Korecz, A. Rockenbauer, Z. Kele and T. Kiss: “Speciation study of an imidazolate-bridged copper(II)-zinc(II) complex in aqueous solution”, J. Inorg. Biochem., Vol. 99, (2005), pp. 1619–1629.

    Article  CAS  Google Scholar 

  25. I. Szilágyi, I. Labádi, K. Hernadi, I. Pálinkó, I. Fekete, L. Korecz, A. Rockenbauer and T. Kiss: “Superoxide dismutase activity of a Cu-Zn complex-bare and immobilised”, New J. Chem., Vol. 29, (2005), pp. 740–745.

    Article  CAS  Google Scholar 

  26. M. Sato, S. Nagae, M. Uehara and J. Nakaya: “Properties of imidazolate bridged copper(II)-zinc(II) complexes”, J. Chem. Soc. Chem. Commun., (1984), pp. 1661-1663.

  27. J.L. Fernandez, C. Hurth and A.J. Bard: “Scanning electrochemical microscopy #54. Application to the study of heterogeneous catalytic reactions-hydrogen peroxide decomposition”, J. Phys. Chem. B, Vol. 109, (2005), pp. 9532–9539.

    Article  CAS  Google Scholar 

  28. I. Labádi, I. Szilágyi, N.I. Jakab, K. Hernadi and I. Pálinkó: “Metal complexes immobilised in/on porous matrices-possible enzyme mimics”, Mater. Sci., Vol. 21, (2003), pp. 235–244.

    Google Scholar 

  29. I. Szilágyi, I. Labádi, K. Hernadi, I. Pálinkó and T. Kiss: “Synthesis and IR spectroscopic characterisation of immobilised superoxide dismutase (SOD) mimicking complexes”, J. Mol. Struct., Vol. 744-747, (2005), pp. 495–500.

    Article  CAS  Google Scholar 

  30. G. Anderegg, N.G. Podder, P. Blauenstein, M. Hangartner and H. Stunzi: “Pyridine derivatives as complexing agents 10”, J. Coord. Chem., Vol. 4, (1975), pp. 267–275.

    CAS  Google Scholar 

  31. G. Anderegg and V. Gramlich: “1/1 metal-complexes of bivalent cobalt, nickel, copper, zinc, and cadmium with the tripodal ligand tris[2-(dimethylamino)ethyl]amine-their stabilities and the X-ray crystal-structure of its copper(II) complex sulfate”, Helv. Chim. Acta, Vol. 77, (1994), pp. 685–690.

    Article  CAS  Google Scholar 

  32. R.R. Jacobson, Z. Tyeklar, A. Farooq, K.D. Karlin, S. Liu and J. Zubieta: “A Cu2-O2 complex-crystal-structure and characterization of a reversible dioxygen binding system”, J. Am. Chem. Soc., Vol. 110, (1988), pp. 3690–3692.

    Article  CAS  Google Scholar 

  33. V. Raab, J. Kipke, O. Burghaus and J. Sundermeyer: “Copper complexes of novel superbasic peralkylguanidine derivatives of tris(2-aminoethyl)amine as constraint geometry ligands”, Inorg. Chem., Vol. 40, (2001), pp. 6964–6971.

    Article  CAS  Google Scholar 

  34. N. Singh, K.K. Shukla, R.N. Patel, U.K. Chauhan and R. Shirastava: “E.s.r., magnetic, optical and biological (SOD and antimicrobial) studies of imidazolate bridged Cu(II)-Zn(II) and Cu(II)-Ni(II) complexes with tris(2-amino ethyl)amine as capping ligand: a plausible model for superoxide dismutase”, Spect. Acta A Mol. Spectrosc., Vol. 59, (2003), pp. 3111–3122.

    Google Scholar 

  35. M.A. Derosch and W.C. Trogler: “Hydrolysis of phosphodiesters with Ni(II), Cu(II), Zn(II), Pd(II), and Pt(II) complexes”, Inorg. Chem., Vol. 29, (1990), pp. 2409–2416.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Szilágyi, I., Horváth, L., Labádi, I. et al. Mimicking catalase and catecholase enzymes by copper(II)-containing complexes. cent.eur.j.chem. 4, 118–134 (2006). https://doi.org/10.1007/s11532-005-0009-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11532-005-0009-6

Keywords

Navigation