Advertisement

Journal of Urban Health

, Volume 92, Issue 6, pp 1052–1064 | Cite as

If You Are Not Counted, You Don’t Count: Estimating the Number of African-American Men Who Have Sex with Men in San Francisco Using a Novel Bayesian Approach

  • Paul WessonEmail author
  • Mark S. Handcock
  • Willi McFarland
  • H. Fisher Raymond
Article

Abstract

African-American men who have sex with men (AA MSM) have been disproportionately infected with and affected by HIV and other STIs in San Francisco and the USA. The true scope and scale of the HIV epidemic in this population has not been quantified, in part because the size of this population remains unknown. We used the successive sampling population size estimation (SS-PSE) method, a new Bayesian approach to population size estimation that incorporates network size data routinely collected in respondent-driven sampling (RDS) studies, to estimate the number of AA MSM in San Francisco. This method was applied to data from a 2009 RDS study of AA MSM. An estimate from a separate study of local AA MSM was used to model the prior distribution of the population size. Two-hundred and fifty-six AA MSM were included in the RDS survey. The estimated population size was 4917 (95 % CI 1267–28,771), using a flat prior estimated 1882 (95 % CI 919–2463) as a lower acceptable bound, and a large prior estimated 6762 (95 % CI 1994–13,863) as an acceptable upper bound. Point estimates from the SS-PSE were consistent with estimates from multiplier methods using external data. The SS-PSE method is easily integrated into RDS studies and therefore provides a simple and appealing tool to rapidly produce estimates of the size of key populations otherwise difficult to reach and enumerate.

Keywords

Population size estimation African-American Men who have sex with men HIV/AIDS Respondent-driven sampling 

Notes

Acknowledgments

We thank Ali Mirzazadeh for his valuable suggestions regarding the sensitivity analyses.

References

  1. 1.
    Murray CJL, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380(9859): 2197–2223. doi: 10.1016/S0140-6736(12)61689-4.CrossRefPubMedGoogle Scholar
  2. 2.
    Padian NS, McCoy SI, Karim SSA, et al. HIV prevention transformed: the new prevention research agenda. Lancet. 2011; 378(9787): 269–278. doi: 10.1016/S0140-6736(11)60877-5.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Schwartländer B, Stover J, Hallett T, et al. Towards an improved investment approach for an effective response to HIV/AIDS. Lancet. 2011; 377(9782): 2031–2041. doi: 10.1016/S0140-6736(11)60702-2.CrossRefPubMedGoogle Scholar
  4. 4.
    Heckman TG, Kelly J a, Bogart LM, Kalichman SC, Rompa DJ. HIV risk differences between African-American and white men who have sex with men. J Natl Med Assoc. 1999;91(2):92–100. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2608406&tool=pmcentrez&rendertype=abstract. Accessed September 2014.
  5. 5.
    Torian LV, Makki HA, Menzies IB, Murrill CS. Department of Health sexually transmitted disease clinics, a decade of serosurveillance finds that racial disparities and associations between HIV and gonorrhea persist. Sex Transm Dis. 2002; 29(2): 73–78.CrossRefPubMedGoogle Scholar
  6. 6.
    San Francisco Department of Public Health. HIV/AIDS Epidemiology Annual Report. San Francisco HIV Epidemiology Section. 2010.Google Scholar
  7. 7.
    Sudhinaraset M, Raymond HF, McFarland W. Convergence of HIV prevalence and inter-racial sexual mixing among men who have sex with men, San Francisco, 2004-2011. AIDS Behav. 2013; 17(4): 1550–1556. doi: 10.1007/s10461-012-0370-3.CrossRefPubMedGoogle Scholar
  8. 8.
    Scott HM, Bernstein KT, Raymond HF, Kohn R, Klausner JD. Racial/ethnic and sexual behavior disparities in rates of sexually transmitted infections, San Francisco, 1999-2008. BMC Public Health. 2010; 10: 315. doi: 10.1186/1471-2458-10-315.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    International Working Group for Disease Monitoring and Forcasting. Capture-recapture and multiple-record systems estimation II: applications in human diseases. Am J Epidemiol. 1995; 142(10): 1059–1068.Google Scholar
  10. 10.
    International Working Group for Disease Monitoring and Forcasting. Capture-recapture and multiple-record systems estimation. I: History and theoretical development. Am J …. 1995;142(10):1047–1058. Available at: http://hub.hku.hk/handle/10722/82976. Accessed April 28, 2013.
  11. 11.
    Jones HE, Hickman M, Welton NJ, De Angelis D, Harris RJ, Ades AE. Recapture or precapture? Fallibility of standard capture-recapture methods in the presence of referrals between sources. Am J Epidemiol. 2014; 179(11): 1383–1393. doi: 10.1093/aje/kwu056.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Johnston LG, Prybylski D, Raymond HF, Mirzazadeh A, Manopaiboon C, McFarland W. Incorporating the service multiplier method in respondent-driven sampling surveys to estimate the size of hidden and hard-to-reach populations: case studies from around the world. Sex Transm Dis. 2013; 40: 304–310. doi: 10.1097/OLQ.0b013e31827fd650.CrossRefPubMedGoogle Scholar
  13. 13.
    Salganik MJ, Fazito D, Bertoni N, Abdo AH, Mello MB, Bastos FI. Assessing network scale-up estimates for groups most at risk of HIV/AIDS: evidence from a multiple-method study of heavy drug users in Curitiba Brazil. Am J Epidemiol. 2011; 174(10): 1190–1196. doi: 10.1093/aje/kwr246.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Fuqua V, Chen Y-H, Packer T, et al. Using social networks to reach Black MSM for HIV testing and linkage to care. AIDS Behav. 2012; 16(2): 256–265. doi: 10.1007/s10461-011-9918-x.CrossRefPubMedGoogle Scholar
  15. 15.
    Handcock M, Gile K, Mar C. Estimating hidden population size using respondent-driven sampling data. arXiv Prepr arXiv12096241. 2012. Available at: http://arxiv.org/pdf/1209.6241v1.pdf. Accessed February 3, 2014.
  16. 16.
    Heckathorn D. Respondent-driven sampling: a new approach to the study of hidden populations. Soc Probl. 1997;44:174–199. Available at: http://www.jstor.org/stable/ 10.2307/3096941. Accessed April 28, 2013.
  17. 17.
    Heckathorn D. Respondent-driven sampling II: deriving valid population estimates from chain-referral samples of hidden populations. Soc Probl. 2002;49(1):11–34. Available at: http://www.jstor.org/stable/ 10.1525/sp.2002.49.1.11. Accessed April 28, 2013.
  18. 18.
    Gile KJ, Handcock MS. Respondent-driven sampling: an assessment of current methodology. Sociol Methodol. 2010; 40(1): 285–327. doi: 10.1111/j.1467-9531.2010.01223.x.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Nair VN, Wang PC. Maximum likelihood estimation under a successive model discovery sampling. Technometrics. 1989; 31(4): 423–436.CrossRefGoogle Scholar
  20. 20.
    West M. Inference in successive sampling discovery models. J Econ. 1996; 75(1): 217–238. doi: 10.1016/0304-4076(95)01777-1.CrossRefGoogle Scholar
  21. 21.
    Hamra G, MacLehose R, Richardson D. Markov chain Monte Carlo: an introduction for epidemiologists. Int J Epidemiol. 2013; 42(2): 627–634. doi: 10.1093/ije/dyt043.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    StataCorp. Stata Statistical Software: release 12. College Station, TX: StataCorp LP. 2011.Google Scholar
  23. 23.
    R Core Team. R: a language and environment for statistical computing. 2014. Available at: http://www.r-project.org. Accessed July 2014.
  24. 24.
    Handcock MS, Fellows IE, Gile KJ. RDS Analyst: software for the analysis of respondent-driven sampling data, Version 0.42. 2014. http://hpmrg.org. Accessed July 2014.
  25. 25.
    Gile KJ. Improved inference for respondent-driven sampling data with application to HIV prevalence estimation. J Am Stat Assoc. 2011; 106(493): 135–146. doi: 10.1198/jasa.2011.ap09475.CrossRefGoogle Scholar
  26. 26.
    Bureau USC. Sex by age universe : total population 2006-2010 American community survey selected population tables. 2014:1–2. Available at: http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_SF4_B01001&prodType=table. Accessed November 2014.
  27. 27.
    Raymond HF, Bereknyei S, Berglas N, Hunter J, Ojeda N, McFarland W. Estimating population size, HIV prevalence and HIV incidence among men who have sex with men: a case example of synthesising multiple empirical data sources and methods in San Francisco. Sex Transm Infect. 2013; 89(5): 383–387. doi: 10.1136/sextrans-2012-050675.CrossRefPubMedGoogle Scholar
  28. 28.
    Rudolph AE, Fuller CM, Latkin C. The importance of measuring and accounting for potential biases in respondent-driven samples. AIDS Behav. 2013; 17(6): 2244–2252. doi: 10.1007/s10461-013-0451-y.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Kendall C, Kerr LRFS, Gondim RC, et al. An empirical comparison of respondent-driven sampling, time location sampling, and snowball sampling for behavioral surveillance in men who have sex with men, Fortaleza Brazil. AIDS Behav. 2008; 12(SUPPL. 1): 97–104. doi: 10.1007/s10461-008-9390-4.CrossRefGoogle Scholar
  30. 30.
    Handcock M, Gile K. SSPSE: estimating hidden population size using respondent driven sampling data. 2015. Available at: http://hpmrg.org. Accessed July 2014.
  31. 31.
    Malekinejad M, Johnston LG, Kendall C, Kerr LRFS, Rifkin MR, Rutherford GW. Using respondent-driven sampling methodology for HIV biological and behavioral surveillance in international settings: a systematic review. AIDS Behav. 2008; 12(4 Suppl): S105–S130. doi: 10.1007/s10461-008-9421-1.CrossRefPubMedGoogle Scholar
  32. 32.
    UNAIDS/WHO Working Group on Global HIV/AIDS and STI Surveillance. Guidelines on Estimating the Size of Populations Most at Risk to HIV. Geneva, Switzerland; 2011.Google Scholar

Copyright information

© The New York Academy of Medicine 2015

Authors and Affiliations

  • Paul Wesson
    • 1
    Email author
  • Mark S. Handcock
    • 2
  • Willi McFarland
    • 3
  • H. Fisher Raymond
    • 3
  1. 1.University of California, BerkeleyBerkeleyUSA
  2. 2.University of California, Los AngelesLos AngelesUSA
  3. 3.San Francisco Department of Public HealthSan FranciscoUSA

Personalised recommendations