Skip to main content


Log in

Medicaid Patients at High Risk for Frequent Hospital Admission: Real-Time Identification and Remediable Risks

  • Published:
Journal of Urban Health Aims and scope Submit manuscript


Patients with frequent hospitalizations generate a disproportionate share of hospital visits and costs. Accurate determination of patients who might benefit from interventions is challenging: most patients with frequent admissions in 1 year would not continue to have them in the next. Our objective was to employ a validated regression algorithm to case-find Medicaid patients at high-risk for hospitalization in the next 12 months and identify intervention-amenable characteristics to reduce hospitalization risk. We obtained encounter data for 36,457 Medicaid patients with any visit to an urban public hospital from 2001 to 2006 and generated an algorithm-based score for hospitalization risk in the subsequent 12 months for each patient (0 = lowest, 100 = highest). To determine medical and social contributors to the current admission, we conducted in-depth interviews with high-risk hospitalized patients (scores >50) and analyzed associated Medicaid claims data. An algorithm-based risk score >50 was attained in 2,618 (7.2%) patients. The algorithm’s positive predictive value was equal to 0.67. During the study period, 139 high-risk patients were admitted: 60 met inclusion criteria and 50 were interviewed. Fifty-six percent cited the Emergency Department as their usual source of care or had none. Sixty-eight percent had >1 chronic medical conditions, and 42% were admitted for conditions related to substance use. Sixty percent were homeless or precariously housed. Mean Medicaid expenditures for the interviewed patients were $39,188 and $84,040 per patient for the years immediately prior to and following study participation, respectively. Findings including high rates of substance use, homelessness, social isolation, and lack of a medical home will inform the design of interventions to improve community-based care and reduce hospitalizations and associated costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.


Similar content being viewed by others


  1. Robbins JM, Webb D. Hospital admission rates for a racially diverse low-income cohort of patients with diabetes: The urban diabetes study. Am J Public Health. 2006;96(7):1260–1264.

    Article  PubMed  Google Scholar 

  2. Medicaid, A Primer. Issue brief. Accessed on: October 17, 2008.

  3. Sommers A, Cohen M. Medicaid’s high cost enrollees: how much do they drive program spending? Issue brief. Accessed on: October 17, 2008.

  4. Billings J, Mijanovich T. Improving the management of care for high-cost medicaid patients. Health Aff. 2007;26(6):1643–1654.

    Article  Google Scholar 

  5. Demas P, Webber M, Schoenbaum E, Weedon J, McWayne J, Enriquez E. Maternal adherence to the zidovudine regimen for HIV-exposed infants to prevent HIV infection: a preliminary study. Pediatrics. 2002;110(3):e35.

    Article  PubMed  Google Scholar 

  6. Hansen TE, Elliot KD. Frequent psychiatric visitors to a Veterans Affairs Medical center Emergency Care Unit. Hosp Community Psychiatry. 1993;44:372–375.

    PubMed  CAS  Google Scholar 

  7. Schrag D, Xu F, Hanger M, Elkin E, Bickell N, Bach P. Fragmentation of care for frequently hospitalized urban residents. Med Care. 2006;44(6):560–567.

    Article  PubMed  Google Scholar 

  8. Masson CL, Sorensen JL, Phibbs CS, Okin RL. Predictors of medical service utilization among individuals with co-occurring HIV infection and substance abuse disorders. AIDS Care. 2004;16(6):744–755.

    Article  PubMed  CAS  Google Scholar 

  9. Lin C-H, Chen Y-S, Lin C-H, Lin K-S. Factors affecting time to rehospitalization for patients with major depressive disorder. Psychiatry Clin Neurosci. 2007;61(3):249–254.

    Article  PubMed  Google Scholar 

  10. Camberg L, Smith N, Beaudet M, Daley J, Cagan M, Thibault G. Discharge destination and repeat hospitalizations. Med Care. 1997;35(8):756–767.

    Article  PubMed  CAS  Google Scholar 

  11. Handel DA, McConnell JK, Wallace N, Gallia C. How much does emergency department use affect the cost of Medicaid programs? Ann Emerg Med. 2008;51(5):614–621.e611.

    Article  PubMed  Google Scholar 

  12. Fuda KK, Immekus R. Frequent users of Massachusetts emergency departments: a statewide analysis. Ann Emerg Med. 2006;48:1.

    Article  Google Scholar 

  13. Roland M, Dusheiko M, Gravelle H, Parker S. Follow up of people aged 65 and over with a history of emergency admission: analysis of routine admission data. BMJ. 2005;330:289–292.

    Article  PubMed  Google Scholar 

  14. Sledge WH, Brown KE, Levine JM, et al. A randomized controlled trial of primary intensive care to reduce hospital admissions in patients with high utilization of inpatient services. Dis Manag. 2006;9(6):328–338.

    Article  PubMed  Google Scholar 

  15. Sorensen JL, Dilley J, London J, Okin RL, Delucchi KL, Phibbs CS. Case management for substance abusers with HIV/AIDS: a randomized clinical trial. Am J Drug Alcohol Abuse. 2003;29(1):133–150.

    Article  PubMed  Google Scholar 

  16. Poole PJ, Chase B, Frankel A, Black PN. Case management may reduce length of hospital stay in patients with recurrent admissions for chronic obstructive pulmonary disease. Respirology. 2001;6:37–42.

    Article  PubMed  CAS  Google Scholar 

  17. Billings J, Dixon J, Mijanovich T, Wennberg D. Case finding for patients at risk of readmission to hospital: development of algorithm to identify high risk patients. BMJ. 2006;333(7563):327–332.

    Article  PubMed  Google Scholar 

  18. Tresch D, Simpson WJ, Burton J. Relationship of long-term and acute-care facilities. The problem of patient transfer and continuity of care. J Am Geriatr Soc. 1985;33(12):819–826.

    PubMed  CAS  Google Scholar 

  19. Lin H, Tian W, Chen C, Liu T, Tsai S, Lee H. The association between readmission rates and length of stay for schizophrenia: a 3-year population-based study. Schizophr Res. 2006;83(2–3):211–214.

    Article  PubMed  Google Scholar 

  20. Kushel MB, Vittinghoff E, Haas JS. Factors associated with the health care utilization of homeless persons. JAMA. 2001;285(2):200–206.

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi T, Baernstein A, Binswanger I, Bradley K, Merrill JO. Predictors of hospitalization for injection drug users seeking care for soft tissue infections. J Gen Intern Med. 2007;22(3):382–388.

    Article  PubMed  Google Scholar 

  22. Ware JE, Kosinski M, Keller SD. A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34(3):220–233.

    Article  PubMed  Google Scholar 

  23. The SF-12 A health survey instrument review. Accessed on: March 25, 2007.

  24. The Alcohol, Smoking, and Substance Use Involvement Screening Test (ASSIST). Development, reliability, and feasibility. Addiction. 2002;97(9):1183–1194.

    Article  Google Scholar 

  25. O’ Brien K, Wortman C, Kessler R, Joseph J. Social relationships of men at risk for AIDS. Soc Sci Med. 1993;36(9):1161–1167.

    Article  CAS  Google Scholar 

  26. Derogatis L. Brief symptom inventory (BSI) 18: Administration, scoring, and procedures manual. Minneapolis: NCS Pearson; 2001.

    Google Scholar 

  27. Hibbard J, Mahoney E, Stockard J, Tussler M. Development and testing of a short form of the patient activation measure. Health Serv Res. 2005;40(6):1918–1930.

    Article  PubMed  Google Scholar 

  28. CDC. National center for health statistics definitions: usual source of care. Accessed on: October 17, 2008.

  29. CDC. National Center for Health Statistics: National Health and Nutrition Examination Survey. Accessed on: Oct 17, 2008.

  30. Svarstad B, Chewning B, Sleath B, Claesson C. The Brief Medication Questionnaire: a tool for screening patient adherence and barriers to adherence. Patient Educ Couns. 1999;37(2):113–124.

    Article  PubMed  CAS  Google Scholar 

  31. The Henry J. Kaiser Family Foundation: Accessed on: October 17, 2008.

  32. Kolbasovsky A, Reich L, Futterman R. Predicting future hospital utilization for mental health conditions. J Behav Health Serv Res. 2007;34(1):34–42.

    Article  PubMed  Google Scholar 

  33. Almagro P, Barreiro B, Ochoa de Echagüen A, et al. Risk factors for hospital readmission in patients with chronic obstructive pulmonary disease. Respiration. 2006;73(3):311–317.

    Article  PubMed  Google Scholar 

  34. Cook C, Tsui C, Ziemer D, Naylor D, Miller W, Hentz J. Common reasons for hospitalization in urban diabetes patients. Ethn Dis. 2006;16(2):391–397.

    PubMed  Google Scholar 

  35. Young T, Pollack D. Misclassification of deaths caused by cocaine. Am J Forensic Med Pathol. 1993;14(1):43–47.

    Article  PubMed  Google Scholar 

Download references


This research was supported by a grant from the United Hospital Fund and by a research fellowship training grant: CDC T01 CD000146. An abstract of this research was presented at the Society for General Internal Medicine (SGIM) Annual Research Meeting in 2007 and at the Academy Health Annual Research Meeting in 2007.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Maria C. Raven.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Appendix A (DOC 106 KB )

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raven, M.C., Billings, J.C., Goldfrank, L.R. et al. Medicaid Patients at High Risk for Frequent Hospital Admission: Real-Time Identification and Remediable Risks. J Urban Health 86, 230–241 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: