Skip to main content
Log in

Thromboembolism and Immune Checkpoint Blockade in Cancer Patients: An Old Foe for New Research

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Patients with cancer are at an increased risk of venous (VTE) and arterial thromboembolism (ATE), and thromboembolic events (TEs) represent the second-leading cause of death in cancer patients. The risk of cancer-associated thromboembolism is multifactorial. In addition to patient risk factors, anticancer treatments have been found to increase the risk of both VTE and ATE. Immune checkpoint blockade (ICB) has become a mainstay of treatment in various types of cancers. Their use is associated with the occurrence of a new spectrum of side effects called immune-related adverse events. Meta-analyses—including data from prospective and retrospective studies—and case reports both reported VTE and ATE as adverse events associated with ICB, with a cumulative incidence equaling around 3% and 1%, respectively. The exact mechanism underlying a TE after ICB use is currently unclear, as well as its associated risk factors. Considering their potential life-threatening impact, it is important for clinicians to be aware of the potential thrombotic complications, to educate patients and recognize early signs and symptoms of VTE and ATE, in order to allow prompt treatment (if needed) and avoid complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ando Y, Hayashi T, Sugimoto R, Nishibe S, Ito K, Kawada K, et al. Risk factors for cancer-associated thrombosis in patients undergoing treatment with immune checkpoint inhibitors. Invest New Drugs. 2020;38(4):1200–6. https://doi.org/10.1007/s10637-019-00881-6.

    Article  CAS  PubMed  Google Scholar 

  2. Ay C, Dunkler D, Marosi C, Chiriac AL, Vormittag R, Simanek R, et al. Prediction of venous thromboembolism in cancer patients. Blood. 2010;116(24):5377–82. https://doi.org/10.1182/blood-2010-02-270116.

    Article  CAS  PubMed  Google Scholar 

  3. Bai Y, Li JY, Li J, Zhang B, Liu YH, Zhang BY, et al. Risk of venous and arterial thromboembolic events associated with tyrosine kinase inhibitors in advanced thyroid cancer: a meta-analysis and systematic review. Oncotarget. 2019;10(41):4205–12. https://doi.org/10.18632/oncotarget.24599.

    Article  PubMed  Google Scholar 

  4. Bevilacqua MP, Pober JS, Majeau GR, Fiers W, Cotran RS, Gimbrone MA Jr. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci USA. 1986;83(12):4533–7. https://doi.org/10.1073/pnas.83.12.4533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cau R, Solinas C, De Silva P, Lambertini M, Agostinetto E, Scartozzi M, et al. Role of cardiac MRI in the diagnosis of immune checkpoint inhibitor-associated myocarditis. Int J Cancer. 2022. https://doi.org/10.1002/ijc.34169.

    Article  PubMed  Google Scholar 

  6. Chew HK, Wun T, Harvey D, Zhou H, White RH. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med. 2006;166(4):458–64. https://doi.org/10.1001/archinte.166.4.458.

    Article  PubMed  Google Scholar 

  7. Cochain C, Chaudhari SM, Koch M, Wiendl H, Eckstein HH, Zernecke A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE. 2014;9(4): e93280. https://doi.org/10.1371/journal.pone.0093280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cunningham D, Starling N, Rao S, Iveson T, Nicolson M, Coxon F, Upper Gastrointestinal Clinical Studies Group of the National Cancer Research Institute of the United, K, et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med. 2008;358(1):36–46. https://doi.org/10.1056/NEJMoa073149.

    Article  CAS  PubMed  Google Scholar 

  9. Esmon CT. Inflammation and thrombosis. J Thromb Haemost. 2003;1(7):1343–8. https://doi.org/10.1046/j.1538-7836.2003.00261.x.

    Article  CAS  PubMed  Google Scholar 

  10. Falanga A, Panova-Noeva M, Russo L. Procoagulant mechanisms in tumour cells. Best Pract Res Clin Haematol. 2009;22(1):49–60. https://doi.org/10.1016/j.beha.2008.12.009.

    Article  CAS  PubMed  Google Scholar 

  11. Frere C, Ederhy S, Salem JE. Letter to the editors-in-chief reply to: Solinas et al. Venous and arterial thromboembolic events with immune check point inhibitors: a systematic review. Thromb Res. 2021;208:214–6. https://doi.org/10.1016/j.thromres.2021.02.028.

    Article  CAS  PubMed  Google Scholar 

  12. Gervaso L, Dave H, Khorana Alok A. Venous and arterial thromboembolism in patients with cancer. JACC CardioOncology. 2021;3(2):173–90. https://doi.org/10.1016/j.jaccao.2021.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gong J, Drobni ZD, Alvi RM, Murphy SP, Sullivan RJ, Hartmann SE, et al. Immune checkpoint inhibitors for cancer and venous thromboembolic events. Eur J Cancer. 2021;158:99–110. https://doi.org/10.1016/j.ejca.2021.09.010.

    Article  CAS  PubMed  Google Scholar 

  14. Grilz E, Konigsbrugge O, Posch F, Schmidinger M, Pirker R, Lang IM, et al. Frequency, risk factors, and impact on mortality of arterial thromboembolism in patients with cancer. Haematologica. 2018;103(9):1549–56. https://doi.org/10.3324/haematol.2018.192419.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grover SP, Hisada YM, Kasthuri RS, Reeves BN, Mackman N. Cancer therapy-associated thrombosis. Arterioscler Thromb Vasc Biol. 2021;41(4):1291–305. https://doi.org/10.1161/ATVBAHA.120.314378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haanen J, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv119–42. https://doi.org/10.1093/annonc/mdx225.

    Article  CAS  PubMed  Google Scholar 

  17. Heit JA. Epidemiology of venous thromboembolism. Nat Rev Cardiol. 2015;12(8):464–74. https://doi.org/10.1038/nrcardio.2015.83.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hill H, Robinson M, Lu L, Slaughter D, Amin A, Mileham K, Patel JN. Venous thromboembolism incidence and risk factors in non-small cell lung cancer patients receiving first-line systemic therapy. Thromb Res. 2021;208:71–8. https://doi.org/10.1016/j.thromres.2021.10.014.

    Article  CAS  PubMed  Google Scholar 

  19. Horsted F, West J, Grainge MJ. Risk of venous thromboembolism in patients with cancer: a systematic review and meta-analysis. PLoS Med. 2012;9(7): e1001275. https://doi.org/10.1371/journal.pmed.1001275.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer. 2007;110(10):2339–46. https://doi.org/10.1002/cncr.23062.

    Article  PubMed  Google Scholar 

  21. Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost. 2007;5(3):632–4. https://doi.org/10.1111/j.1538-7836.2007.02374.x.

    Article  CAS  PubMed  Google Scholar 

  22. Khorana AA, Francis CW, Culakova E, Lyman GH. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer. 2005;104(12):2822–9. https://doi.org/10.1002/cncr.21496.

    Article  PubMed  Google Scholar 

  23. Khorana AA, Kuderer NM, Culakova E, Lyman GH, Francis CW. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008;111(10):4902–7. https://doi.org/10.1182/blood-2007-10-116327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levi M. Cancer-related coagulopathies. Thromb Res. 2014;133:S70–5. https://doi.org/10.1016/S0049-3848(14)50012-6.

    Article  CAS  PubMed  Google Scholar 

  25. Lijfering WM, Flinterman LE, Vandenbroucke JP, Rosendaal FR, Cannegieter SC. Relationship between venous and arterial thrombosis: a review of the literature from a causal perspective. Semin Thromb Hemost. 2011;37(8):885–96. https://doi.org/10.1055/s-0031-1297367.

    Article  PubMed  Google Scholar 

  26. Marks MA, Engels EA. Venous thromboembolism and cancer risk among elderly adults in the United States. Cancer Epidemiol Biomark Prev. 2014;23(5):774–83. https://doi.org/10.1158/1055-9965.EPI-13-1138.

    Article  Google Scholar 

  27. Moink F, Chan WE, Wiedemann S, Hoeller C, Tuchmann F, Aretin MB, et al. Incidence, risk factors, and outcomes of venous and arterial thromboembolism in immune checkpoint inhibitor therapy. Blood. 2021;137(12):1669–78. https://doi.org/10.1182/blood.2020007878.

    Article  CAS  Google Scholar 

  28. Mulder FI, Horvath-Puho E, van Es N, van Laarhoven HWM, Pedersen L, Moik F, et al. Venous thromboembolism in cancer patients: a population-based cohort study. Blood. 2021;137(14):1959–69. https://doi.org/10.1182/blood.2020007338.

    Article  CAS  PubMed  Google Scholar 

  29. Navi BB, Reiner AS, Kamel H, Iadecola C, Okin PM, Elkind MSV, et al. Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol. 2017;70(8):926–38. https://doi.org/10.1016/j.jacc.2017.06.047.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Padda J, Khalid K, Mohan A, Pokhriyal S, Batra N, Hitawala G, et al. Factor V Leiden G1691A and Prothrombin Gene G20210A mutations on pregnancy outcome. Cureus. 2021;13(8): e17185. https://doi.org/10.7759/cureus.17185.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Paneesha S, McManus A, Arya R, Scriven N, Farren T, Nokes T, et al. Frequency, demographics and risk (according to tumour type or site) of cancer-associated thrombosis among patients seen at outpatient DVT clinics. Thromb Haemost. 2010;103(2):338–43. https://doi.org/10.1160/TH09-06-0397.

    Article  CAS  PubMed  Google Scholar 

  32. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974–82. https://doi.org/10.1200/JCO.2014.59.4358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Previtali E, Bucciarelli P, Passamonti SM, Martinelli I. Risk factors for venous and arterial thrombosis. Blood Transfus. 2011;9(2):120–38. https://doi.org/10.2450/2010.0066-10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Roopkumar J, Swaidani S, Kim AS, Thapa B, Gervaso L, Hobbs BP, et al. Increased incidence of venous thromboembolism with cancer immunotherapy. Med (N Y). 2021;2(4):423–34. https://doi.org/10.1016/j.medj.2021.02.002.

    Article  CAS  Google Scholar 

  35. Rosendaal FR. Venous thrombosis: a multicausal disease. Lancet. 1999;353(9159):1167–73. https://doi.org/10.1016/s0140-6736(98)10266-0.

    Article  CAS  PubMed  Google Scholar 

  36. Sato R, Imamura K, Sakata S, Ikeda T, Horio Y, Iyama S, et al. Disorder of coagulation-fibrinolysis system: an emerging toxicity of anti-PD-1/PD-L1 monoclonal antibodies. J Clin Med. 2019;8(6):762. https://doi.org/10.3390/jcm8060762.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schutz FAB, Je Y, Azzi GR, Nguyen PL, Choueiri TK. Bevacizumab increases the risk of arterial ischemia: a large study in cancer patients with a focus on different subgroup outcomes. Ann Oncol. 2011;22(6):1404–12. https://doi.org/10.1093/annonc/mdq587.

    Article  CAS  PubMed  Google Scholar 

  38. Sheng IY, Gupta S, Reddy CA, Angelini D, Funchain P, Sussman TA, et al. Thromboembolism in patients with metastatic renal cell carcinoma treated with immunotherapy. Target Oncol. 2021;16(6):813–21. https://doi.org/10.1007/s11523-021-00852-z.

    Article  PubMed  Google Scholar 

  39. Solinas C, Migliori E, De Silva P, Willard-Gallo K. LAG3: the biological processes that motivate targeting this immune checkpoint molecule in human cancer. Cancers (Basel). 2019;11(8):1213. https://doi.org/10.3390/cancers11081213.

    Article  Google Scholar 

  40. Solinas C, Saba L, Sganzerla P, Petrelli F. Venous and arterial thromboembolic events with immune checkpoint inhibitors: a systematic review. Thromb Res. 2020;196:444–53. https://doi.org/10.1016/j.thromres.2020.09.038.

    Article  CAS  PubMed  Google Scholar 

  41. Sussman TA, Li H, Hobbs B, Funchain P, McCrae KR, Khorana AA. Incidence of thromboembolism in patients with melanoma on immune checkpoint inhibitor therapy and its adverse association with survival. J Immunother Cancer. 2021;9(1):e001719. https://doi.org/10.1136/jitc-2020-001719.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sussman TA, Vu L, Buchbinder EI, Ott PA, Markt SC, Koroukian SM, et al. Thromboembolism (TE) and association with survival in patients (pts) with melanoma receiving chemo- or immunotherapy. J Clin Oncol. 2022;40(16_suppl):12082–12082. https://doi.org/10.1200/JCO.2022.40.16_suppl.12082.

    Article  Google Scholar 

  43. Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutierrez E, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24–34. https://doi.org/10.1056/NEJMoa2109970.

    Article  CAS  PubMed  Google Scholar 

  44. Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous thrombosis. Blood. 2013;122(10):1712–23. https://doi.org/10.1182/blood-2013-04-460121.

    Article  CAS  PubMed  Google Scholar 

  45. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52. https://doi.org/10.1016/S0140-6736(04)17018-9.

    Article  PubMed  Google Scholar 

  46. Zakai NA, Wright J, Cushman M. Risk factors for venous thrombosis in medical inpatients: validation of a thrombosis risk score. J Thromb Haemost. 2004;2(12):2156–61. https://doi.org/10.1111/j.1538-7836.2004.00991.x.

    Article  CAS  PubMed  Google Scholar 

  47. Zoller B, Ji J, Sundquist J, Sundquist K. Risk of coronary heart disease in patients with cancer: a nationwide follow-up study from Sweden. Eur J Cancer. 2012;48(1):121–8. https://doi.org/10.1016/j.ejca.2011.09.015.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. David Gray for assistance in writing in English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireille Langouo Fontsa.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Matteo Lambertini declares the following potential conflict of interest, all outside the submitted work: consultancy or advisory fees: Roche, Lilly, Novartis, AstraZeneca, Pfizer, Seagen, Gilead, MSD, Exact Sciences; speaker honoraria: Roche, Lilly, Novartis, Pfizer, Takeda, Ipsen, Sandoz, Libbs, Knight. Mario Scartozzi acted as consultant for MSD, BMS, Astra‐Zeneca, Merck, Amgen and Servier and received speaker honoraria from MSD, Mercks, Amgen, Eisai, Servier outside the submitted work. Mireille Langouo Fontsa, Marco Maria Aiello, Edoardo Migliori, Karen Willard-Gallo, and Cinzia Solinas declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

Mireille Langouo and Cinzia Solinas entirely wrote the manuscript. Mireille Langouo, Marco Aiello and Cinzia Solinas drafted the manuscript, did the bibliographic search and are responsible for data accuracy. Edoardo Migliori and Mireille Langouo created the figure. Marco Aiello, Edoardo Migliori, Matteo Lambertini and Mario Scartozzi gave intellectual input and contributed to the edits of the manuscript. Cinzia Solinas supervised the entire process. All authors read the final version and agreed to final submission.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langouo Fontsa, M., Aiello, M.M., Migliori, E. et al. Thromboembolism and Immune Checkpoint Blockade in Cancer Patients: An Old Foe for New Research. Targ Oncol 17, 497–505 (2022). https://doi.org/10.1007/s11523-022-00908-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-022-00908-8

Navigation