Prognostic Value of Soluble Programmed Cell Death Ligand-1 (sPD-L1) in Various Cancers: A Meta-analysis

Abstract

Background

The prognostic value of soluble programmed cell death ligand-1 (sPD-L1) in patients with cancer has been inconsistent across previous studies.

Objective

This meta-analysis aimed to investigate the prognostic significance of sPD-L1 in human tumors.

Methods

A comprehensive search of PubMed, Web of Science, Embase, and Cochrane databases from inception to January 6, 2020 was conducted. Studies of sPD-L1 measured by enzyme-linked immunosorbent assay (ELISA) that had available hazard ratios (HRs) for survival outcomes based on high or low sPD-L1 levels were included. The primary endpoint was long-term survival, namely, overall survival (OS), and the second endpoint was short-term survival, including progression-free survival (PFS), disease-free survival (DFS), recurrence-free survival (RFS), and cancer-specific survival (CSS).

Results

A total of 21 studies, with 2413 patients, were included in this meta-analysis. Elevated sPD-L1 was associated with worse OS [HR = 2.46, 95% confidence interval (CI) 1.74–3.49, P < 0.001]. Moreover, high sPD-L1 was predictive of worse PFS/DFS/RFS/CSS (HR = 2.22, 95% CI 1.47–3.35, P < 0.001). High sPD-L1 was consistently correlated with poor OS and PFS/DFS/RFS/CSS irrespective of study design, sample, and cut-off value of sPD-L1. However, there was non-significant correlation between sPD-L1 and sex, age, clinical stage, Eastern Cooperative Oncology Group Performance Status, tumor differentiation, or serum lactate dehydrogenase.

Conclusions

This meta-analysis showed that sPD-L1 was correlated with poor prognosis in human tumors. In addition, sPD-L1 could be used as a predictive factor of inferior outcomes during multiple malignancy treatments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 2019;5(12):1749–68. https://doi.org/10.1001/jamaoncol.2019.2996.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Constantinidou A, Alifieris C, Trafalis DT. Targeting programmed cell death-1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol Ther. 2019;194:84–106. https://doi.org/10.1016/j.pharmthera.2018.09.008.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R. PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy. J Cell Physiol. 2019;234(2):1313–25. https://doi.org/10.1002/jcp.27172.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Balar AV, Weber JS. PD-1 and PD-L1 antibodies in cancer: current status and future directions. Cancer Immunol Immunother. 2017;66(5):551–64. https://doi.org/10.1007/s00262-017-1954-6.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Wu P, Wu D, Li LJ, Chai Y, Huang J. PD-L1 and survival in solid tumors: a meta-analysis. PLoS ONE. 2015;10(6):e0131403.  https://doi.org/10.1371/journal.pone.0131403.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Pyo JS, Kang G, Kim JY. Prognostic role of PD-L1 in malignant solid tumors: a meta-analysis. Int J Biol Markers. 2017;32(1):E68–74. https://doi.org/10.5301/jbm.5000225.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Tang C, Chang JY. PD-L1 expression in lung cancer. J Thorac Dis. 2016;8(11):3053–5. https://doi.org/10.21037/jtd.2016.11.38.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Huang SY, Lin HH, Lin CW, Li CC, Yao M, Tang JL, et al. Soluble PD-L1: a biomarker to predict progression of autologous transplantation in patients with multiple myeloma. Oncotarget. 2016;7(38):62490–502. https://doi.org/10.18632/oncotarget.11519.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Vecchiarelli S, D’Incecco A, Gallo M, De Luca A, Minuti G, Landi L, et al. Circulating programmed death ligand-1 (PD-L1) in non-small cell lung cancer (NSCLC). Ann Oncol. 2017;28(Suppl 6):vi62. https://doi.org/10.1093/annonc/mdx426.027.

    Article  Google Scholar 

  11. 11.

    Gong B, Kiyotani K, Sakata S, Nagano S, Kumehara S, Baba S, et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J Exp Med. 2019;216(4):982–1000. https://doi.org/10.1084/jem.20180870.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Rossille D, Gressier M, Damotte D, Maucort-Boulch D, Pangault C, Semana G, et al. High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-cell lymphoma: results from a French multicenter clinical trial. Leukemia. 2014;28(12):2367–75. https://doi.org/10.1038/leu.2014.137.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Zheng Z, Bu Z, Liu X, Zhang L, Li Z, Wu A, et al. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chin J Cancer Res. 2014;26(1):104–11. https://doi.org/10.3978/j.issn.1000-9604.2014.02.08.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Zhang J, Gao J, Li Y, Nie J, Dai L, Hu W, et al. Circulating PD-L1 in NSCLC patients and the correlation between the level of PD-L1 expression and the clinical characteristics. Thorac Cancer. 2015;6(4):534–8. https://doi.org/10.1111/1759-7714.12247.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Fukuda T, Kamai T, Masuda A, Nukui A, Abe H, Arai K, et al. Higher preoperative serum levels of PD-L1 and B7–H4 are associated with invasive and metastatic potential and predictable for poor response to VEGF-targeted therapy and unfavorable prognosis of renal cell carcinoma. Cancer Med. 2016;5(8):1810–20. https://doi.org/10.1002/cam4.754.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Takahashi N, Iwasa S, Sasaki Y, Shoji H, Honma Y, Takashima A, et al. Serum levels of soluble programmed cell death ligand 1 as a prognostic factor on the first-line treatment of metastatic or recurrent gastric cancer. J Cancer Res Clin Oncol. 2016;142(8):1727–38. https://doi.org/10.1007/s00432-016-2184-6.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Sideras K, de Man RA, Harrington SM, Polak WG, Zhou G, Schutz HM, et al. Circulating levels of PD-L1 and galectin-9 are associated with patient survival in surgically treated hepatocellular carcinoma independent of their intra-tumoral expression levels. Sci Rep. 2019;9(1):10677. https://doi.org/10.1038/s41598-019-47235-z.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Wei W, Xu B, Wang Y, Wu C, Jiang J, Wu C. Prognostic significance of circulating soluble programmed death ligand-1 in patients with solid tumors: a meta-analysis. Medicine (Baltimore). 2018;97(3):e9617. https://doi.org/10.1097/md.0000000000009617.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ding Y, Sun C, Li J, Hu L, Li M, Liu J, et al. The prognostic significance of soluble programmed death ligand 1 expression in cancers: a systematic review and meta-analysis. Scand J Immunol. 2017;86(5):361–7. https://doi.org/10.1111/sji.12596.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12. https://doi.org/10.1016/j.jclinepi.2009.06.005.

    Article  PubMed  Google Scholar 

  21. 21.

    Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16. https://doi.org/10.1186/1745-6215-8-16.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Stang A. Critical evaluation of the Newcastle–Ottawa Scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5. https://doi.org/10.1007/s10654-010-9491-z.

    Article  PubMed  Google Scholar 

  23. 23.

    Cochran W. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.

    Article  Google Scholar 

  24. 24.

    Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. https://doi.org/10.1002/sim.1186.

    Article  PubMed  Google Scholar 

  25. 25.

    Wang H, Wang L, Liu WJ, Xia ZJ, Huang HQ, Jiang WQ, et al. High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients. Oncotarget. 2016;7(22):33035–45. https://doi.org/10.18632/oncotarget.8847.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Okuma Y, Hosomi Y, Nakahara Y, Watanabe K, Sagawa Y, Homma S. High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer. Lung Cancer. 2017;104:1–6. https://doi.org/10.1016/j.lungcan.2016.11.023.

    Article  PubMed  Google Scholar 

  27. 27.

    Zhao J, Zhang P, Wang JH, Xi QS, Zhao XQ, Ji MH, et al. Plasma levels of soluble programmed death ligand-1 may be associated with overall survival in nonsmall cell lung cancer patients receiving thoracic radiotherapy. Medicine. 2017;96(7):e6102. https://doi.org/10.1097/md.0000000000006102.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Akutsu Y, Murakami K, Kano M, Toyozumi T, Matsumoto Y, Takahashi M, et al. The concentration of programmed cell death-ligand 1 in the peripheral blood is a useful biomarker for esophageal squamous cell carcinoma. Esophagus. 2018;15(2):103–8. https://doi.org/10.1007/s10388-018-0604-1.

    Article  PubMed  Google Scholar 

  29. 29.

    Jin J, Si J, Liu Y, Wang H, Ni R, Wang J. Elevated serum soluble programmed cell death ligand 1 concentration as a potential marker for poor prognosis in small cell lung cancer patients with chemotherapy. Respir Res. 2018;19(1):197. https://doi.org/10.1186/s12931-018-0885-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kim HJ, Park S, Kim KJ, Seong J. Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular carcinoma patients treated with radiotherapy. Radiother Oncol. 2018;129(1):130–5. https://doi.org/10.1016/j.radonc.2017.11.027.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Okuma Y, Wakui H, Utsumi H, Sagawa Y, Hosomi Y, Kuwano K, et al. Soluble programmed cell death ligand 1 as a novel biomarker for nivolumab therapy for non-small-cell lung cancer. Clin Lung Cancer. 2018;19(5):410. https://doi.org/10.1016/j.cllc.2018.04.014.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Aghajani MJ, Roberts TL, Yang T, McCafferty CE, Caixeiro NJ, DeSouza P, et al. Elevated levels of soluble PD-L1 are associated with reduced recurrence in papillary thyroid cancer. Endocr Connect. 2019;8(7):1040–51. https://doi.org/10.1530/ec-19-0210.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Bian B, Fanale D, Dusetti N, Roque J, Pastor S, Chretien AS, et al. Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma. Oncoimmunology. 2019;8(4):e1561120. https://doi.org/10.1080/2162402x.2018.1561120.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Han X, Gu YK, Li SL, Chen H, Chen MS, Cai QQ, et al. Pre-treatment serum levels of soluble programmed cell death-ligand 1 predict prognosis in patients with hepatitis B-related hepatocellular carcinoma. J Cancer Res Clin Oncol. 2019;145(2):303–12. https://doi.org/10.1007/s00432-018-2758-6.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Ito M, Yajima S, Suzuki T, Oshima Y, Nanami T, Sumazaki M, et al. High serum PD-L1 level is a poor prognostic biomarker in surgically treated esophageal cancer. Cancer Med. 2020;9(4):1321–7. https://doi.org/10.1002/cam4.2789.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Shen HR, Ji YL, Zhou DB, Zhang Y, Wang W, Sun J, et al. Soluble programmed death-ligand 1 are highly expressed in peripheral T-cell lymphoma: a biomarker for prognosis. Hematology. 2019;24(1):392–8. https://doi.org/10.1080/16078454.2019.1590965.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Shigemori T, Toiyama Y, Okugawa Y, Yamamoto A, Yin C, Narumi A, et al. Soluble PD-L1 expression in circulation as a predictive marker for recurrence and prognosis in gastric cancer: direct comparison of the clinical burden between tissue and serum PD-L1 expression. Ann Surg Oncol. 2019;26(3):876–83. https://doi.org/10.1245/s10434-018-07112-x.

    Article  PubMed  Google Scholar 

  38. 38.

    Tominaga T, Akiyoshi T, Yamamoto N, Taguchi S, Mori S, Nagasaki T, et al. Clinical significance of soluble programmed cell death-1 and soluble programmed cell death-ligand 1 in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. PLoS ONE. 2019;14(2):e0212978. https://doi.org/10.1371/journal.pone.0212978.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Ugurel S, Schadendorf D, Horny K, Sucker A, Schramm S, Utikal J, et al. Elevated baseline serum PD-1 or PD-L1 predicts poor outcome of PD-1 inhibition therapy in metastatic melanoma. Ann Oncol. 2020;31(1):144–52. https://doi.org/10.1016/j.annonc.2019.09.005.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity. 2018;48(3):434–52. https://doi.org/10.1016/j.immuni.2018.03.014.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Yarchoan M, Albacker LA, Hopkins AC, Montesion M, Murugesan K, Vithayathil TT, et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight. 2019;4(6):e126908. https://doi.org/10.1172/jci.insight.126908.

    Article  PubMed Central  Google Scholar 

  42. 42.

    Wang YT, Wang HB, Yao H, Li CS, Fang JY, Xu J. Regulation of PD-L1: emerging routes for targeting tumor immune evasion. Front Pharmacol. 2018;9:536. https://doi.org/10.3389/fphar.2018.00536.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7718):382. https://doi.org/10.1038/s41586-018-0392-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Poggio M, Hu TY, Pai CC, Chu B, Belair CD, Chang A, et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 2019;177(2):414. https://doi.org/10.1016/j.cell.2019.02.016.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Sanmamed MF, Chen LP. Inducible expression of B7–H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J. 2014;20(4):256–61. https://doi.org/10.1097/ppo.0000000000000061.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Gani F, Nagarajan N, Kim Y, Zhu QF, Luan L, Bhaijjee F, et al. Program death 1 immune checkpoint and tumor microenvironment: implications for patients with intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2016;23(8):2610–7. https://doi.org/10.1245/s10434-016-5101-y.

    Article  PubMed  Google Scholar 

  47. 47.

    Zou WP, Chen LP. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8(6):467–77. https://doi.org/10.1038/nri2326.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Weber M, Wehrhan F, Baran C, Agaimy A, Buttner-Herold M, Preidl R, et al. PD-L1 expression in tumor tissue and peripheral blood of patients with oral squamous cell carcinoma. Oncotarget. 2017;8(68):112584–97. https://doi.org/10.18632/oncotarget.22576.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Arantes L, De Carvalho AC, Melendez ME, Carvalho AL. Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev Mol Diagn. 2018;18(1):85–112. https://doi.org/10.1080/14737159.2017.1404906.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fei Yue.

Ethics declarations

Funding

This study was funded by Natural Science Foundation of Xizang (Tibet) Autonomous Region [XZ2019ZRG-ZY60(Z)].

Conflict of interest

Xiaoyang Li, Yu Zheng, and Fei Yue declare that they have no conflicts of interest that might be relevant to the contents of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All datasets presented in this study are included in the article/supplementary material.

Code availability

Not applicable.

Author contributions

XL and YZ conceived the study and designed the protocol. XL and YZ performed the literature search. YZ and FY selected the studies and extracted the relevant information. XL and YZ synthesized the data. FY wrote the first draft of the paper. All authors critically revised successive drafts of the paper and approved the final version.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1247 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zheng, Y. & Yue, F. Prognostic Value of Soluble Programmed Cell Death Ligand-1 (sPD-L1) in Various Cancers: A Meta-analysis. Targ Oncol (2020). https://doi.org/10.1007/s11523-020-00763-5

Download citation