Skip to main content

Advertisement

Log in

The Urinary Microbiome and Anticancer Immunotherapy: The Potentially Hidden Role of Unculturable Microbes

  • Current Opinion
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Several urinary disorders, including overactive bladder, urinary incontinence, and interstitial cystitis, are often characterized by negative urine cultures. The application of metagenomics (i.e., 16S rRNA microbial profiling or whole-genome shotgun sequencing) to urine samples has enabled the identification of previously undetected bacteria, contributing to the discovery and characterization of the urinary microbiome. The most frequent species isolated are Lactobacillus (15%), Corynebacterium (14.2%), Streptococcus (11.9%), Actinomyces (6.9%), and Staphylococcus (6.9%). Although several studies are emerging in this context, the role of urinary microbiota in the pathogenesis of infections and in tumor carcinogenesis remains unclear. Furthermore, data on the activity of gut microbiota in modulating sensitivity to immune checkpoint inhibitors in advanced cancer patients suggest that the influence of urinary microbiota on tumor response to anticancer therapy should also be investigated. Moreover, its possible relationship with tumor mutational burden, which is in turn correlated with response to immunotherapy, should be the focus of future studies. Of note, the effect of antibiotics on this complex scenario seems to deserve careful consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siddiqui H, Nederbragt AJ, Lagesen K, Jeansson SL, Jakobsen KS. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol. 2011;11:244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wolfe AJ, Toh E, Shibata N, Rong R, Kenton K, Fitzgerald M, Mueller ER, Schreckenberger P, Dong Q, Nelson DE, Brubaker L. Evidence of uncultivated bacteria in the adult female bladder. J Clin Microbiol. 2012;50:1376–83.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hilt EE, McKinley K, Pearce MM, Rosenfeld AB, Zilliox MJ, Mueller ER, Brubaker L, Gai X, Wolfe AJ, Schreckenberger PC. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol. 2014;52:871–6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ticinesi A, Nouvenne A, Tana C, Prati B, Cerundolo N, Miraglia C, de Angelis GL, Di Mario F, Meschi T. The impact of intestinal microbiota on bio-medical research: definitions, techniques and physiology of a “new frontier”. Acta Biomed. 2018;89(9S):52–9.

    PubMed  Google Scholar 

  5. Fouts DE, Pieper R, Szpakowski S, Pohl H, Knoblach S, Suh MJ, Huang ST, Ljungberg I, Sprague BM, Lucas SK, Torralba M, Nelson KE, Groah SL. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med. 2012;10:174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis DA, Brown R, Williams J, White P, Jacobson SK, Marchesi JR, Drake MJ. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front Cell Infect Microbiol. 2013;3:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep. 2014;16(10):406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dave M, Higgins PDR, Middha S, Rioux K. The human gut microbiome: current knowledge, challenges, and future directions. Transl Res. 2012;160:246–57.

    Article  CAS  PubMed  Google Scholar 

  9. Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med. 2019;25(4):667–78.

    Article  CAS  PubMed  Google Scholar 

  10. Shrestha E, White JR, Yu SH, Kulac I, Ertunc O, De Marzo AM, Yegnasubramanian S, Mangold LA, Partin AW, Sfanos KS. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J Urol. 2018;199:161–71.

    Article  PubMed  Google Scholar 

  11. Puhr M, De Marzo A, Isaacs W, Lucia MS, Sfanos K, Yegnasubramanian S, Culig Z. Inflammation, microbiota, and prostate cancer. Eur Urol Focus. 2016;2:374–82.

    Article  PubMed  Google Scholar 

  12. Alanee S, El-Zawahry A, Dynda D, Dabaja A, McVary K, Karr M, Braundmeier-Fleming A. A prospective study to examine the association of the urinary and fecal microbiota with prostate cancer diagnosis after transrectal biopsy of the prostate using 16sRNA gene analysis. Prostate. 2019;79:81–7.

    Article  CAS  PubMed  Google Scholar 

  13. Markowski MC, Boorjian SA, Burton JP, Hahn NM, Ingersoll MA, Vareki SM, Pal SK, Sfanos KS. The microbiome and genitourinary cancer: a collaborative review. Eur Urol. 2019;18:31051.

    Google Scholar 

  14. Bajic P, Wolfe AJ, Gupta GN. The urinary microbiome: implications in bladder cancer pathogenesis and therapeutics. Urology. 2019;126:10–5.

    Article  PubMed  Google Scholar 

  15. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103.

    Article  CAS  PubMed  Google Scholar 

  16. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–7.

    Article  CAS  PubMed  Google Scholar 

  18. Santoni M, Piva F, Conti A, Santoni A, Cimadamore A, Scarpelli M, Battelli N, Montironi R. Re: gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Eur Urol. 2018;74:521–2.

    Article  PubMed  Google Scholar 

  19. Park J, Kim M, Kang SG, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6 K pathway. Mucosal Immunol. 2015;8:80–93.

    Article  CAS  PubMed  Google Scholar 

  20. Katayama Y, Yamada T, Tanimura K, Yoshimura A, Takeda T, Chihara Y, et al. Impact of bowel movement condition on immune checkpoint inhibitor efficacy in patients with advanced non-small cell lung cancer. Thorac Cancer. 2019;10(3):526–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 2016;65(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  22. Mancabelli L, Milani C, Lugli GA, et al. Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Sci Rep. 2017;7(1):9879.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346:954–9.

    Article  CAS  PubMed  Google Scholar 

  24. Thio H. The microbiome in psoriasis and psoriatic arthritis: the skin perspective. J Rheumatol Suppl. 2018;94:30–1.

    PubMed  Google Scholar 

  25. Yu Y, Champer J, Beynet D, Kim J, Friedman AJ. The role of the cutaneous microbiome in skin cancer: lessons learned from the gut. J Drugs Dermatol. 2015;14(5):461–5.

    PubMed  Google Scholar 

  26. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lalani AA, Sonpavde GP. Systemic treatments for metastatic urothelial carcinoma. Expert Opin Pharmacother. 2019;20:201–8.

    Article  CAS  PubMed  Google Scholar 

  31. Atkins MB, Clark JI, Quinn DI. Immune checkpoint inhibitors in advanced renal cell carcinoma: experience to date and future directions. Ann Oncol. 2017;28:1484–94.

    Article  CAS  PubMed  Google Scholar 

  32. Derosa L, Hellmann MD, Spaziano M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small cell lung cancer. Ann Oncol. 2018; https://doi.org/10.1093/annonc/mdy103.

  33. Elkrief A, El Raichani L, Richard C, Messaoudene M, Belkaid W, Malo J, et al. Antibiotics are associated with decreased progression-free survival of advanced melanoma patients treated with immune checkpoint inhibitors. Oncoimmunology. 2019;8(4):e1568812.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zilberman-Schapira G, Zmora N, Itav S, Bashiardes S, Elinav H, Elinav E. The gut microbiome in human immunodeficiency virus infection. BMC Med. 2016;14:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vazquez-Castellano JF, Serrano-Villar S, Jimenez-Hernandez N, Soto del Rio MD, Gayo S, Rojo D, et al. Interplay between gut microbiota metabolism and inflammation in HIV infection. ISME J 2018;12:1964–76.

    Article  CAS  Google Scholar 

  36. Fadlallah J, El Kafsi H, Sterlin D, Juste C, Parizot C, Dorgham K, et al. Microbial ecology perturbation in human IgA deficiency. Sci Transl Med 2018. https://doi.org/10.1126/scitranslmed.aan1217.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa Bersanelli.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Melissa Bersanelli received honoraria for advisory roles and as speaker at scientific events from Bristol-Myers Squibb (BMS), Novartis, and Pfizer. Andrea Ticinesi received a congress grant from Novo Nordisk. Sebastiano Buti received honoraria for advisory roles and as speaker at scientific events from Pfizer, BMS, IPSEN, Pierre-Fabre, Merck Sharp & Dohme (MSD), and AstraZeneca. Matteo Santoni declares that he has no conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bersanelli, M., Santoni, M., Ticinesi, A. et al. The Urinary Microbiome and Anticancer Immunotherapy: The Potentially Hidden Role of Unculturable Microbes. Targ Oncol 14, 247–252 (2019). https://doi.org/10.1007/s11523-019-00643-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-019-00643-7

Navigation