Skip to main content

Targeting Toll-Like Receptors for Cancer Therapy

Abstract

The immune system encompasses a broad array of defense mechanisms against foreign threats, including invading pathogens and transformed neoplastic cells. Toll-like receptors (TLRs) are critically involved in innate immunity, serving as pattern recognition receptors whose stimulation leads to additional innate and adaptive immune responses. Malignant cells exploit the natural immunomodulatory functions of TLRs, expressed mainly by infiltrating immune cells but also aberrantly by tumor cells, to foster their survival, invasion, and evasion of anti-tumor immune responses. An extensive body of research has demonstrated context-specific roles for TLR activation in different malignancies, promoting disease progression in certain instances while limiting cancer growth in others. Despite these conflicting roles, TLR agonists have established therapeutic benefits as anti-cancer agents that activate immune cells in the tumor microenvironment and facilitate the expression of cytokines that allow for infiltration of anti-tumor lymphocytes and the suppression of oncogenic signaling pathways. This review focuses on the clinical application of TLR agonists for cancer treatment. We also highlight agents that are undergoing development in clinical trials, including investigations of TLR agonists in combination with other immunotherapies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Couzin-Frankel J. Breakthrough of the year 2013. Cancer Immunotherapy. Science. 2013;342(6165):1432–3.

    CAS  PubMed  Article  Google Scholar 

  2. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    CAS  PubMed  Article  Google Scholar 

  3. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.

    CAS  PubMed  Article  Google Scholar 

  4. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86(6):973–83.

    CAS  Article  PubMed  Google Scholar 

  5. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388(6640):394–7.

    CAS  PubMed  Article  Google Scholar 

  6. O'Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol. 2013;13(6):453–60.

    CAS  PubMed  Article  Google Scholar 

  7. Tartey S,Takeuchi O. Toll-like receptors: role in inflammation and cancer, cancer and inflammation mechanisms: chemical, biological, and clinical aspects, First Edition. Hoboken: John Wiley & Sons, Inc; 2014. Chapter 7.

    Chapter  Google Scholar 

  8. Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol. 2009;9(8):535–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Goutagny N, Estornes Y, Hasan U, Lebecque S, Caux C. Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol. 2012;7(1):29–54.

    PubMed  Article  Google Scholar 

  10. Mastorci K, Muraro E, Pasini E, Furlan C, Sigalotti L, Cinco M, et al. Toll-like receptor 1/2 and 5 ligands enhance the expression of cyclin D1 and D3 and induce proliferation in mantle cell lymphoma. PLoS One. 2016;11(4):e0153823.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. Abdi J, et al. Toll-like receptor (TLR)-1/2 triggering of multiple myeloma cells modulates their adhesion to bone marrow stromal cells and enhances bortezomib-induced apoptosis. PLoS One. 2014;9(5):e96608.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. Fonte E, et al. Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation. Haematologica. 2015;100(11):1460–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Oldford SA, et al. A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth. J Immunol. 2010;185(11):7067–76.

    CAS  PubMed  Article  Google Scholar 

  14. Chuang HC, et al. Toll-like receptor 3-mediated tumor invasion in head and neck cancer. Oral Oncol. 2012;48(3):226–32.

    CAS  PubMed  Article  Google Scholar 

  15. Gambara G, et al. TLR3 engagement induces IRF-3-dependent apoptosis in androgen-sensitive prostate cancer cells and inhibits tumour growth in vivo. J Cell Mol Med. 2015;19(2):327–39.

    CAS  PubMed  Article  Google Scholar 

  16. Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, et al. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer. 2010;102(5):908–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Fang H, Ang B, Xu X, Huang X, Wu Y, Sun Y, et al. TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells. Cell Mol Immunol. 2014;11(2):150–9.

    CAS  Article  PubMed  Google Scholar 

  18. Omar AA, et al. Toll-like receptors -4 and -5 in oral and cutaneous squamous cell carcinomas. J Oral Pathol Med. 2015;44(4):258–65.

    PubMed  Article  CAS  Google Scholar 

  19. Cai Z, et al. Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res. 2011;71(7):2466–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Jego G, et al. Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia. 2006;20(6):1130–7.

    CAS  PubMed  Article  Google Scholar 

  21. Wang F, et al. Activation of Toll-like receptor 7 regulates the expression of IFN-lambda1, p53, PTEN, VEGF, TIMP-1 and MMP-9 in pancreatic cancer cells. Mol Med Rep. 2016;13(2):1807–12.

    CAS  PubMed  Article  Google Scholar 

  22. Cherfils-Vicini J, Platonova S, Gillard M, Laurans L, Validire P, Caliandro R, et al. Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J Clin Invest. 2010;120(4):1285–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Ye J, et al. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med. 2014;6(10):1294–311.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Tanaka J, Sugimoto K, Shiraki K, Tameda M, Kusagawa S, Nojiri K, et al. Functional cell surface expression of Toll-like receptor 9 promotes cell proliferation and survival in human hepatocellular carcinomas. Int J Oncol. 2010;37(4):805–14.

    CAS  PubMed  Article  Google Scholar 

  25. Brignole C, Marimpietri D, Di Paolo D, Perri P, Morandi F, Pastorino F, et al. Therapeutic targeting of TLR9 inhibits cell growth and induces apoptosis in neuroblastoma. Cancer Res. 2010;70(23):9816–26.

    CAS  PubMed  Article  Google Scholar 

  26. Yu L, Wang L, Chen S. Dual character of Toll-like receptor signaling: pro-tumorigenic effects and anti-tumor functions. Biochim Biophys Acta. 2013;1835(2):144–54.

    CAS  PubMed  Google Scholar 

  27. Basith S, Manavalan B, Yoo TH, Kim SG, Choi S. Roles of Toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res. 2012;35(8):1297–316.

    CAS  PubMed  Article  Google Scholar 

  28. Dajon M, Iribarren K, Cremer I. Toll-like receptor stimulation in cancer: a pro- and anti-tumor double-edged sword. Immunobiology. 2017;222(1):89–100.

    CAS  PubMed  Article  Google Scholar 

  29. Sasai M, Yamamoto M. Pathogen recognition receptors: ligands and signaling pathways by Toll-like receptors. Int Rev Immunol. 2013;32(2):116–33.

    CAS  PubMed  Article  Google Scholar 

  30. Jimenez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of Toll-like receptors--from microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev. 2016;15(1):1–8.

    CAS  PubMed  Article  Google Scholar 

  31. Cammarota R, Bertolini V, Pennesi G, Bucci EO, Gottardi O, Garlanda C, et al. The tumor microenvironment of colorectal cancer: stromal TLR-4 expression as a potential prognostic marker. J Transl Med. 2010;8:112.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Hennessy EJ, Parker AE, O'Neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov. 2010;9(4):293–307.

    CAS  PubMed  Article  Google Scholar 

  33. Tartey S, Takeuchi O. Pathogen recognition and Toll-like receptor targeted therapeutics in innate immune cells. Int Rev Immunol. 2017:1–17.

  34. Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004;16(1):3–9.

    CAS  PubMed  Article  Google Scholar 

  35. Broad A, Kirby JA, Jones DE. Toll-like receptor interactions: tolerance of MyD88-dependent cytokines but enhancement of MyD88-independent interferon-beta production. Immunology. 2007;120(1):103–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410(6832):1099–103.

    CAS  PubMed  Article  Google Scholar 

  37. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science. 2003;301(5633):640–3.

    CAS  PubMed  Article  Google Scholar 

  38. Li TT, Ogino S, Qian ZR. Toll-like receptor signaling in colorectal cancer: carcinogenesis to cancer therapy. World J Gastroenterol. 2014;20(47):17699–708.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest. 2007;117(12):3786–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IkappaBalpha deficiency. Clin Microbiol Rev. 2011;24(3):490–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Pradere JP, Dapito DH, Schwabe RF. The yin and Yang of Toll-like receptors in cancer. Oncogene. 2014;33(27):3485–95.

    CAS  PubMed  Article  Google Scholar 

  42. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med. 2005;11(11):1173–9.

    CAS  PubMed  Article  Google Scholar 

  43. Cannova J, Breslin SJP, Zhang J. Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases. Front Med. 2015;9(3):288–303.

    PubMed  Article  Google Scholar 

  44. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer. 2009;9(1):57–63.

    CAS  PubMed  Article  Google Scholar 

  45. Matijevic T, Pavelic J. Toll-like receptors: cost or benefit for cancer? Curr Pharm Des. 2010;16(9):1081–90.

    CAS  PubMed  Article  Google Scholar 

  46. Starnes CO. Coley's toxins in perspective. Nature. 1992;357(6373):11–2.

    CAS  PubMed  Article  Google Scholar 

  47. LaRue H, Ayari C, Bergeron A, Fradet Y. Toll-like receptors in urothelial cells--targets for cancer immunotherapy. Nat Rev Urol. 2013;10(9):537–45.

    CAS  PubMed  Article  Google Scholar 

  48. Wang Z, Yan J, Lin H, Hua F, Wang X, Liu H, et al. Toll-like receptor 4 activity protects against hepatocellular tumorigenesis and progression by regulating expression of DNA repair protein Ku70 in mice. Hepatology. 2013;57(5):1869–81.

    CAS  PubMed  Article  Google Scholar 

  49. Liu WT, Jing YY, Yu GF, Han ZP, Yu DD, Fan QM, et al. Toll like receptor 4 facilitates invasion and migration as a cancer stem cell marker in hepatocellular carcinoma. Cancer Lett. 2015;358(2):136–43.

    CAS  PubMed  Article  Google Scholar 

  50. Bohnhorst J, Rasmussen T, Moen SH, Flottum M, Knudsen L, Borset M, et al. Toll-like receptors mediate proliferation and survival of multiple myeloma cells. Leukemia. 2006;20(6):1138–44.

    CAS  PubMed  Article  Google Scholar 

  51. O'Leary DP, Bhatt L, Woolley JF, Gough DR, Wang JH, Cotter TG, et al. TLR-4 signalling accelerates colon cancer cell adhesion via NF-kappaB mediated transcriptional up-regulation of Nox-1. PLoS One. 2012;7(10):e44176.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Ridnour LA, Cheng RY, Switzer CH, Heinecke JL, Ambs S, Glynn S, et al. Molecular pathways: Toll-like receptors in the tumor microenvironment--poor prognosis or new therapeutic opportunity. Clin Cancer Res. 2013;19(6):1340–6.

    CAS  PubMed  Article  Google Scholar 

  53. Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 2005;65(12):5009–14.

    CAS  PubMed  Article  Google Scholar 

  54. Yang H, Wang B, Wang T, Xu L, He C, Wen H, et al. Toll-like receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis. PLoS One. 2014;9(10):e109980.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. Huang Y, Cai B, Xu M, Qiu Z, Tao Y, Zhang Y, et al. Gene silencing of Toll-like receptor 2 inhibits proliferation of human liver cancer cells and secretion of inflammatory cytokines. PLoS One. 2012;7(7):e38890.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Yang H, Zhou H, Feng P, Zhou X, Wen H, Xie X, et al. Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion. J Exp Clin Cancer Res. 2010;29:92.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457(7225):102–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Stevens VL, Hsing AW, Talbot JT, Zheng SL, Sun J, Chen J, et al. Genetic variation in the Toll-like receptor gene cluster (TLR10-TLR1-TLR6) and prostate cancer risk. Int J Cancer. 2008;123(11):2644–50.

    CAS  PubMed  Article  Google Scholar 

  59. Castano-Rodriguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM. The role of TLR2, TLR4 and CD14 genetic polymorphisms in gastric carcinogenesis: a case-control study and meta-analysis. PLoS One. 2013;8(4):e60327.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Balkwill F, Coussens LM. Cancer: an inflammatory link. Nature. 2004;431(7007):405–6.

    CAS  PubMed  Article  Google Scholar 

  61. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.

    CAS  Article  PubMed  Google Scholar 

  62. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol. 2011;12(8):715–23.

    CAS  PubMed  Article  Google Scholar 

  63. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441(7092):431–6.

    CAS  Article  PubMed  Google Scholar 

  64. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461–6.

    CAS  Article  PubMed  Google Scholar 

  65. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.

    CAS  Article  PubMed  Google Scholar 

  66. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8(8):618–31.

    CAS  PubMed  Article  Google Scholar 

  67. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:149185.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 2013;14(6):e218–28.

    CAS  PubMed  Article  Google Scholar 

  69. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28:367–88.

    CAS  Article  PubMed  Google Scholar 

  70. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.

    CAS  PubMed  Article  Google Scholar 

  71. Waki K, Yamada A. Blockade of high mobility group box 1 augments antitumor T-cell response induced by peptide vaccination as a co-adjuvant. Cancer Sci. 2016;107(12):1721–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10(2):131–44.

    CAS  PubMed  Article  Google Scholar 

  73. Han S, Xu W, Wang Z, Qi X, Wang Y, Ni Y, et al. Crosstalk between the HIF-1 and Toll-like receptor/nuclear factor-kappaB pathways in the oral squamous cell carcinoma microenvironment. Oncotarget. 2016;7(25):37773–89.

    PubMed  PubMed Central  Article  Google Scholar 

  74. Wang RF, Peng G, Wang HY. Regulatory T cells and Toll-like receptors in tumor immunity. Semin Immunol. 2006;18(2):136–42.

    CAS  PubMed  Article  Google Scholar 

  75. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306.

    CAS  Article  PubMed  Google Scholar 

  77. Palani CD, Ramanathapuram L, Lam-Ubol A, Kurago ZB. Toll-like receptor 2 induces adenosine receptor A2a and promotes human squamous carcinoma cell growth via extracellular signal regulated kinases (1/2). Oncotarget. 2018;9(6):6814–29.

    PubMed  Article  Google Scholar 

  78. Rich AM, Hussaini HM, Parachuru VP, Seymour GJ. Toll-like receptors and cancer, particularly oral squamous cell carcinoma. Front Immunol. 2014;5:464.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. Szczepanski MJ, Czystowska M, Szajnik M, Harasymczuk M, Boyiadzis M, Kruk-Zagajewska A, et al. Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res. 2009;69(7):3105–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K, Krishnareddy S, et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 2007;133(6):1869–81.

    CAS  PubMed  Article  Google Scholar 

  81. Chen CL, Tsukamoto H, Liu JC, Kashiwabara C, Feldman D, Sher L, et al. Reciprocal regulation by TLR4 and TGF-beta in tumor-initiating stem-like cells. J Clin Invest. 2013;123(7):2832–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Uthaya Kumar DB, Chen CL, Liu JC, Feldman DE, Sher LS, French S, et al. TLR4 signaling via NANOG cooperates with STAT3 to activate Twist1 and promote formation of tumor-initiating stem-like cells in livers of mice. Gastroenterology. 2016;150(3):707–19.

    CAS  PubMed  Article  Google Scholar 

  83. Alvarado AG, Thiagarajan PS, Mulkearns-Hubert EE, Silver DJ, Hale JS, Alban TJ, et al. Glioblastoma cancer stem cells evade innate immune suppression of self-renewal through reduced TLR4 expression. Cell Stem Cell. 2017;20(4):450–461 e4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Herrmann A, Cherryholmes G, Schroeder A, Phallen J, Alizadeh D, Xin H, et al. TLR9 is critical for glioma stem cell maintenance and targeting. Cancer Res. 2014;74(18):5218–28.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Adams S. Toll-like receptor agonists in cancer therapy. Immunotherapy. 2009;1(6):949–64.

    CAS  PubMed  Article  Google Scholar 

  86. Iribarren K, Bloy N, Buque A, Cremer I, Eggermont A, Fridman WH, et al. Trial watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. Oncoimmunology. 2016;5(3):e1088631.

    PubMed  Article  CAS  Google Scholar 

  87. Chiang CL, Kandalaft LE, Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int Rev Immunol. 2011;30(2–3):150–82.

    CAS  PubMed  Article  Google Scholar 

  88. Mauldin IS, Wages NA, Stowman AM, Wang E, Olson WC, Deacon DH, et al. Topical treatment of melanoma metastases with imiquimod, plus administration of a cancer vaccine, promotes immune signatures in the metastases. Cancer Immunol Immunother. 2016;65(10):1201–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A, et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of Toll-like receptors. Infect Immun. 2000;68(12):6883–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Bohle A, Brandau S. Immune mechanisms in bacillus Calmette-Guerin immunotherapy for superficial bladder cancer. J Urol. 2003;170(3):964–9.

    PubMed  Article  Google Scholar 

  91. Higuchi T, Shimizu M, Owaki A, Takahashi M, Shinya E, Nishimura T, et al. A possible mechanism of intravesical BCG therapy for human bladder carcinoma: involvement of innate effector cells for the inhibition of tumor growth. Cancer Immunol Immunother. 2009;58(8):1245–55.

    CAS  PubMed  Article  Google Scholar 

  92. Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol. 1976;116(2):180–3.

    CAS  Article  PubMed  Google Scholar 

  93. Shelley MD, Mason MD, Kynaston H. Intravesical therapy for superficial bladder cancer: a systematic review of randomised trials and meta-analyses. Cancer Treat Rev. 2010;36(3):195–205.

    PubMed  Article  Google Scholar 

  94. Lamm DL, Blumenstein BA, Crawford ED, Montie JE, Scardino P, Grossman HB, et al. A randomized trial of intravesical doxorubicin and immunotherapy with bacille Calmette-Guerin for transitional-cell carcinoma of the bladder. N Engl J Med. 1991;325(17):1205–9.

    CAS  PubMed  Article  Google Scholar 

  95. Brausi M, Oddens J, Sylvester R, Bono A, van de Beek C, van Andel G, et al. Side effects of Bacillus Calmette-Guerin (BCG) in the treatment of intermediate- and high-risk ta, T1 papillary carcinoma of the bladder: results of the EORTC genito-urinary cancers group randomised phase 3 study comparing one-third dose with full dose and 1 year with 3 years of maintenance BCG. Eur Urol. 2014;65(1):69–76.

    CAS  PubMed  Article  Google Scholar 

  96. Vermorken JB, Claessen AM, van Tinteren H, Gall HE, Ezinga R, Meijer S, et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet. 1999;353(9150):345–50.

    CAS  PubMed  Article  Google Scholar 

  97. Lotem M, Merims S, Frank S, Hamburger T, Nissan A, Kadouri L, et al. Adjuvant autologous melanoma vaccine for macroscopic stage III disease: survival, biomarkers, and improved response to CTLA-4 blockade. J Immunol Res. 2016;2016:8121985.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. Qiu YF, Liu ZG, Yang WJ, Zhao Y, Tang J, Tang WZ, et al. Research progress in the treatment of small cell lung cancer. J Cancer. 2017;8(1):29–38.

    PubMed  PubMed Central  Article  Google Scholar 

  99. Derre L, Cesson V, Lucca I, Cerantola Y, Valerio M, Fritschi U, et al. Intravesical Bacillus Calmette Guerin combined with a cancer vaccine increases local T-cell responses in non-muscle-invasive bladder cancer patients. Clin Cancer Res. 2017;23(3):717–25.

    CAS  PubMed  Article  Google Scholar 

  100. Geisse J, Caro I, Lindholm J, Golitz L, Stampone P, Owens M. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two phase III, randomized, vehicle-controlled studies. J Am Acad Dermatol. 2004;50(5):722–33.

    PubMed  Article  Google Scholar 

  101. Arends TJ, Lammers RJ, Falke J, van der Heijden AG, Rustighini I, Pozzi R, et al. Pharmacokinetic, Pharmacodynamic, and activity evaluation of TMX-101 in a multicenter phase 1 study in patients with papillary non-muscle-invasive bladder cancer. Clin Genitourin Cancer. 2015;13(3):204–9 e2.

    PubMed  Article  Google Scholar 

  102. Drobits B, Holcmann M, Amberg N, Swiecki M, Grundtner R, Hammer M, et al. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest. 2012;122(2):575–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Palamara F, Meindl S, Holcmann M, Luhrs P, Stingl G, Sibilia M. Identification and characterization of pDC-like cells in normal mouse skin and melanomas treated with imiquimod. J Immunol. 2004;173(5):3051–61.

    CAS  PubMed  Article  Google Scholar 

  104. Adams S, Kozhaya L, Martiniuk F, Meng TC, Chiriboga L, Liebes L, et al. Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin Cancer Res. 2012;18(24):6748–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Martinez-Gonzalez MC, Verea-Hernando MM, Yebra-Pimentel MT, Del Pozo J, Mazaira M, Fonseca E. Imiquimod in mycosis fungoides. Eur J Dermatol. 2008;18(2):148–52.

    PubMed  Google Scholar 

  106. Adams S, O'Neill DW, Nonaka D, Hardin E, Chiriboga L, Siu K, et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol. 2008;181(1):776–84.

    CAS  PubMed  Article  Google Scholar 

  107. Cantisani C, Lazic T, Richetta AG, Clerico R, Mattozzi C, Calvieri S. Imiquimod 5% cream use in dermatology, side effects and recent patents. Recent Patents Inflamm Allergy Drug Discov. 2012;6(1):65–9.

    CAS  Article  Google Scholar 

  108. Alving CR, Rao M, Steers NJ, Matyas GR, Mayorov AV. Liposomes containing lipid A: an effective, safe, generic adjuvant system for synthetic vaccines. Expert Rev Vaccines. 2012;11(6):733–44.

    CAS  PubMed  Article  Google Scholar 

  109. Boland G, Beran J, Lievens M, Sasadeusz J, Dentico P, Nothdurft H, et al. Safety and immunogenicity profile of an experimental hepatitis B vaccine adjuvanted with AS04. Vaccine. 2004;23(3):316–20.

    CAS  PubMed  Article  Google Scholar 

  110. Bhatia S, Miller N, Lu H, Ibrani D, Shinohara S, Byrd D, et al. Pilot trial of intratumoral (IT) G100, a Toll-like receptor-4 (TLR4) agonist, in patients (pts) with Merkel cell carcinoma (MCC): final clinical results and immunologic effects on the tumor microenvironment (TME). J Clin Oncol. 2016;34(15__suppl):3021.

    Article  Google Scholar 

  111. Cluff CW. Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv Exp Med Biol. 2010;667:111–23.

    PubMed  Article  Google Scholar 

  112. Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17(6):822–35.

    CAS  PubMed  Article  Google Scholar 

  113. Agarwala SS, Neuberg D, Park Y, Kirkwood JM. Mature results of a phase III randomized trial of bacillus Calmette-Guerin (BCG) versus observation and BCG plus dacarbazine versus BCG in the adjuvant therapy of American Joint Committee on Cancer stage I-III melanoma (E1673): a trial of the Eastern Oncology Group. Cancer. 2004;100(8):1692–8.

    CAS  PubMed  Article  Google Scholar 

  114. Salazar LG, Lu H, Reichow JL, Childs JS, Coveler AL, Higgins DM, et al. Topical Imiquimod plus nab-paclitaxel for breast cancer cutaneous metastases: a phase 2 clinical trial. JAMA Oncol. 2017;3(7):969–73.

    PubMed  PubMed Central  Article  Google Scholar 

  115. Meyer T, Surber C, French LE, Stockfleth E. Resiquimod, a topical drug for viral skin lesions and skin cancer. Expert Opin Investig Drugs. 2013;22(1):149–59.

    CAS  PubMed  Article  Google Scholar 

  116. Rook AH, Gelfand JM, Wysocka M, Troxel AB, Benoit B, Surber C, et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood. 2015;126(12):1452–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. Sabado RL, Pavlick A, Gnjatic S, Cruz CM, Vengco I, Hasan F, et al. Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with high-risk melanoma. Cancer Immunol Res. 2015;3(3):278–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. Krieg AM. Development of TLR9 agonists for cancer therapy. J Clin Invest. 2007;117(5):1184–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene. 2008;27(2):161–7.

    CAS  PubMed  Article  Google Scholar 

  120. Kim YH, Girardi M, Duvic M, Kuzel T, Link BK, Pinter-Brown L, et al. Phase I trial of a Toll-like receptor 9 agonist, PF-3512676 (CPG 7909), in patients with treatment-refractory, cutaneous T-cell lymphoma. J Am Acad Dermatol. 2010;63(6):975–83.

    CAS  PubMed  Article  Google Scholar 

  121. Zent CS, Smith BJ, Ballas ZK, Wooldridge JE, Link BK, Call TG, et al. Phase I clinical trial of CpG oligonucleotide 7909 (PF-03512676) in patients with previously treated chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53(2):211–7.

    CAS  PubMed  Article  Google Scholar 

  122. Xing N, Qiao T, Zhuang X, Yuan S, Zhang Q, Xu G. CpG oligodeoxyribonucleotide 7909 enhances radiosensitivity via downregulating Oct-4 expression in radioresistant lung cancer cells. Onco Targets Ther. 2015;8:1443–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Chen X, Zhang Q, Luo Y, Gao C, Zhuang X, Xu G, et al. High-dose irradiation in combination with Toll-like receptor 9 agonist CpG oligodeoxynucleotide 7909 downregulates PD-L1 expression via the NF-kappaB signaling pathway in non-small cell lung cancer cells. Onco Targets Ther. 2016;9:6511–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. Wang S, Campos J, Gallotta M, Gong M, Crain C, Naik E, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A. 2016;113(46):E7240–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Martins KA, Bavari S, Salazar AM. Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev Vaccines. 2015;14(3):447–59.

    CAS  PubMed  Article  Google Scholar 

  126. Ammi R, De Waele J, Willemen Y, Van Brussel I, Schrijvers DM, Lion E, et al. Poly(I:C) as cancer vaccine adjuvant: knocking on the door of medical breakthroughs. Pharmacol Ther. 2015;146:120–31.

    CAS  PubMed  Article  Google Scholar 

  127. Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Normolle DP, et al. Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric recurrent low-grade gliomas. Neuro-Oncology. 2016;18(8):1157–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. Rosenfeld MR, Chamberlain MC, Grossman SA, Peereboom DM, Lesser GJ, Batchelor TT, et al. A multi-institution phase II study of poly-ICLC and radiotherapy with concurrent and adjuvant temozolomide in adults with newly diagnosed glioblastoma. Neuro-Oncology. 2010;12(10):1071–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, et al. An agonist of Toll-like receptor 5 has radioprotective activity in mouse and primate models. Science. 2008;320(5873):226–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. Kojouharov BM, Brackett CM, Veith JM, Johnson CP, Gitlin II, Toshkov IA, et al. Toll-like receptor-5 agonist Entolimod broadens the therapeutic window of 5-fluorouracil by reducing its toxicity to normal tissues in mice. Oncotarget. 2014;5(3):802–14.

    PubMed  PubMed Central  Article  Google Scholar 

  131. Bakhribah H, Dy G, Ma W, Zhao Y, Opyrchal M, Purmal A, et al. A phase I study of the Toll-like receptor 5 (TLR5) agonist, entolimod in patients (pts) with advanced cancers. J Clin Oncol. 2015;33(15_suppl):3063.

    Article  Google Scholar 

  132. Pandey RK, Sodhi A, Biswas SK, Dahiya Y, Dhillon MK. Mycobacterium indicus pranii mediates macrophage activation through TLR2 and NOD2 in a MyD88 dependent manner. Vaccine. 2012;30(39):5748–54.

    CAS  PubMed  Article  Google Scholar 

  133. Belani CP, Chakraborty BC, Modi RI, Khamar BM. A randomized trial of TLR-2 agonist CADI-05 targeting desmocollin-3 for advanced non-small-cell lung cancer. Ann Oncol. 2017;28(2):298–304.

    CAS  PubMed  Article  Google Scholar 

  134. Rakshit S, Ponnusamy M, Papanna S, Saha B, Ahmed A, Nandi D. Immunotherapeutic efficacy of Mycobacterium indicus pranii in eliciting anti-tumor T cell responses: critical roles of IFNγ. Int J Cancer. 2012;130(4):865–75.

    CAS  PubMed  Article  Google Scholar 

  135. Messaritakis I, Stogiannitsi M, Koulouridi A, Sfakianaki M, Voutsina A, Sotiriou A, et al. Evaluation of the detection of Toll-like receptors (TLRs) in cancer development and progression in patients with colorectal cancer. PLoS One. 2018;13(6):e0197327.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  136. Damiano V, Caputo R, Garofalo S, Bianco R, Rosa R, Merola G, et al. TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts. Proc Natl Acad Sci U S A. 2007;104(30):12468–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. Okazaki S, Stintzing S, Sunakawa Y, Cao S, Zhang W, Yang D, et al. Predictive value of TLR7 polymorphism for cetuximab-based chemotherapy in patients with metastatic colorectal cancer. Int J Cancer. 2017;141(6):1222–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. Milhem M, Gonzales R, Medina T, Kirkwood J, Buchbinder E, Mehmi I, et al. Intratumoral Toll-like receptor 9 (TLR9) agonist, CMP-001, in combination with pembrolizumab can reverse resistance to PD-1 inhibition in a phase Ib trial in subjects with advanced melanoma. Cancer Res. 2018. Abstract CT144.

  139. Takeda Y, Kataoka K, Yamagishi J, Ogawa S, Seya T, Matsumoto M. A TLR3-specific adjuvant relieves innate resistance to PD-L1 blockade without cytokine toxicity in tumor vaccine immunotherapy. Cell Rep. 2017;19(9):1874–87.

    CAS  PubMed  Article  Google Scholar 

  140. Sato-Kaneko F, Yao S, Ahmadi A, Zhang SS, Hosoya T, Kaneda MM, et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight. 2017;2(18).

  141. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. Wimberly H, Brown JR, Schalper K, Haack H, Silver MR, Nixon C, et al. PD-L1 expression correlates with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer. Cancer Immunol Res. 2015;3(4):326–32.

    CAS  Article  PubMed  Google Scholar 

  143. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16(11):2598–608.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.

    CAS  Article  PubMed  Google Scholar 

  145. Lai Y, Weng J, Wei X, Qin L, Lai P, Zhao R, et al. Toll-like receptor 2 costimulation potentiates the antitumor efficacy of CAR T cells. Leukemia. 2018;32(3):801–8.

    CAS  PubMed  Article  Google Scholar 

  146. Liu C. Toll-like receptor 2 deficiency enhances KRAS-driven lung cancer. Cancer Res. 2018. Abstract 4067.

  147. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. Velazquez E, Lattin J, Brindley T, Reinstein Z, Chu R, Liu L, et al. Macrophage Toll-like receptor-chimeric antigen receptors (MOTO-CARs) as a novel adoptive cell therapy for the treatment of solid malignancies. Cancer Res. 2018. Abstract 2563.

  149. Banday AH, Jeelani S, Hruby VJ. Cancer vaccine adjuvants--recent clinical progress and future perspectives. Immunopharmacol Immunotoxicol. 2015;37(1):1–11.

    CAS  PubMed  Article  Google Scholar 

  150. Lesterhuis WJ, Haanen JB, Punt CJ. Cancer immunotherapy--revisited. Nat Rev Drug Discov. 2011;10(8):591–600.

    CAS  PubMed  Article  Google Scholar 

  151. Kyi C, Sabado R, Blazquez A, Posner M, Genden E, Miles B. A phase I study of the safety and immunogenicity of a multipeptide personalized genomic vaccine in the adjuvant treatment of solid cancers. J Clin Oncol. 2017;35(15_suppl):3114.

    Article  Google Scholar 

  152. Dillon PM, Petroni GR, Smolkin ME, Brenin DR, Chianese-Bullock KA, Smith KT, et al. A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-ICLC in early stage breast cancer. J Immunother Cancer. 2017;5(1):92.

    PubMed  PubMed Central  Article  Google Scholar 

  153. Ilyinskii PO, Kovalev GI, O'Neil CP, Roy CJ, Michaud AM, Drefs NM, et al. Synthetic vaccine particles for durable cytolytic T lymphocyte responses and anti-tumor immunotherapy. PLoS One. 2018;13(6):e0197694.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  154. Wang JQ, Jeelall YS, Ferguson LL, Horikawa K. Toll-like receptors and cancer: MYD88 mutation and inflammation. Front Immunol. 2014;5:367.

    PubMed  PubMed Central  Google Scholar 

  155. Treon SP, Xu L, Hunter Z. MYD88 mutations and response to Ibrutinib in Waldenstrom's Macroglobulinemia. N Engl J Med. 2015;373(6):584–6.

    CAS  PubMed  Article  Google Scholar 

  156. Phelan JD, Young RM, Webster DE, Roulland S, Wright GW, Kasbekar M, et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature. 2018;560(7718):387-91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  157. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115–9.

    CAS  PubMed  Article  Google Scholar 

  158. Zhang D, Li L, Jiang H, Knolhoff BL, Lockhart AC, Wang-Gillam A, et al. Constitutive IRAK4 activation underlies poor prognosis and Chemoresistance in pancreatic ductal adenocarcinoma. Clin Cancer Res. 2017;23(7):1748–59.

    CAS  PubMed  Article  Google Scholar 

  159. Choudhary G, Bhagat T, Samson M, Gordon S, Ahrens D, Pradhan K, et al. Efficacy of novel IRAK4 inhibitor CA4948 in AML and MDS. Cancer Res. 2017. Abstract 127.

  160. Kluwe J, Mencin A, Schwabe RF. Toll-like receptors, wound healing, and carcinogenesis. J Mol Med (Berl). 2009;87(2):125–38.

    CAS  Article  Google Scholar 

  161. Burdelya LG, Gleiberman AS, Toshkov I, Aygun-Sunar S, Bapardekar M, Manderscheid-Kern P, et al. Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83(1):228–34.

    CAS  PubMed  Article  Google Scholar 

  162. Burdelya LG, Brackett CM, Kojouharov B, Gitlin II, Leonova KI, Gleiberman AS, et al. Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist. Proc Natl Acad Sci U S A. 2013;110(20):E1857–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. Frank M, Hennenberg EM, Eyking A, Runzi M, Gerken G, Scott P, et al. TLR signaling modulates side effects of anticancer therapy in the small intestine. J Immunol. 2015;194(4):1983–95.

    CAS  PubMed  Article  Google Scholar 

  164. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8(4):403–16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  165. Taylor PA, Ehrhardt MJ, Lees CJ, Panoskaltsis-Mortari A, Krieg AM, Sharpe AH, et al. TLR agonists regulate alloresponses and uncover a critical role for donor APCs in allogeneic bone marrow rejection. Blood. 2008;112(8):3508–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. Kornblit B, Muller K. Sensing danger: Toll-like receptors and outcome in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2017;52(4):499–505.

    CAS  PubMed  Article  Google Scholar 

  167. Elmaagacli AH, Koldehoff M, Beelen DW. Improved outcome of hematopoietic SCT in patients with homozygous gene variant of Toll-like receptor 9. Bone Marrow Transplant. 2009;44(5):295–302.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Adams.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of Interest

Marc J. Braunstein, John Kucharczyk, and Sylvia Adams declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Electronic supplementary material

ESM 1

(PDF 923 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braunstein, M.J., Kucharczyk, J. & Adams, S. Targeting Toll-Like Receptors for Cancer Therapy. Targ Oncol 13, 583–598 (2018). https://doi.org/10.1007/s11523-018-0589-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-018-0589-7