Advertisement

Targeted Oncology

, Volume 13, Issue 3, pp 333–351 | Cite as

The Role of Mesothelin as a Diagnostic and Therapeutic Target in Pancreatic Ductal Adenocarcinoma: A Comprehensive Review

  • Federico Nichetti
  • Antonio Marra
  • Francesca Corti
  • Alessandro Guidi
  • Alessandra Raimondi
  • Natalie Prinzi
  • Filippo de Braud
  • Sara Pusceddu
Review Article

Abstract

Mesothelin is a tumor differentiation antigen, which is highly expressed in several solid neoplasms, including pancreatic cancer. Its selective expression on malignant cells and on only a limited number of healthy tissues has made it an interesting candidate for investigation as a diagnostic and prognostic biomarker and as a therapeutic target. Based on a strong preclinical rationale, a number of therapeutic agents targeting mesothelin have entered clinical trials, including immunotoxins, monoclonal antibodies, antibody-drug conjugates, cancer vaccines, and adoptive T cell therapies with chimeric antigen receptors. In pancreatic cancer, mesothelin has been investigated mainly to address two unmet issues: the urgent need for new laboratory techniques for early tumor detection and the lack of successfully targetable oncogenic alterations for patients’ treatment. In this review, we describe the clinicopathological significance of mesothelin expression in pancreatic cancer initiation and progression, we summarize available studies evaluating mesothelin as a potential diagnostic and prognostic biomarker in this disease, and we discuss current evidence and future perspectives of preclinical and clinical studies testing mesothelin as a molecular target for pancreatic cancer treatment.

Notes

Acknowledgments

The authors gratefully thank Alessandro Bonfante for his graphical assistance.

Compliance with Ethical Standards

Funding

No external funding was used in the preparation of this manuscript.

Conflict of Interest

Filippo de Braud has been the principal investigator of a Phase I trial testing BMS-986148 granted by BMS. He also has taken part to advisory boards of BMS, IGNYTA, Daiichi Sankyo, Novartis, Amgen, and received speaker honoraria from BMS, Eli Lilly, Roche, Amgen, and Novartis. Federico Nichetti, Antonio Marra, Francesca Corti, Alessandro Guidi, Alessandra Raimondi, Natalie Prinzi, and Sara Pusceddu declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

References

  1. 1.
    Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.  https://doi.org/10.1158/0008-5472.CAN-14-0155.PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.  https://doi.org/10.3322/caac.21332.PubMedCrossRefGoogle Scholar
  3. 3.
    Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, et al. Pancreatic cancer. Nat Rev Dis Primers. 2016;2:16022.  https://doi.org/10.1038/nrdp.2016.22.PubMedCrossRefGoogle Scholar
  4. 4.
    Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371(11):1039–49.  https://doi.org/10.1056/NEJMra1404198.PubMedCrossRefGoogle Scholar
  5. 5.
    Guo S, Contratto M, Miller G, Leichman L, Wu J. Immunotherapy in pancreatic cancer: unleash its potential through novel combinations. World J Clin Oncol. 2017;8(3):230–40.  https://doi.org/10.5306/wjco.v8.i3.230.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Thind K, Padrnos LJ, Ramanathan RK, Borad MJ. Immunotherapy in pancreatic cancer treatment: a new frontier. Ther Adv Gastroenterol. 2017;10(1):168–94.  https://doi.org/10.1177/1756283X16667909.CrossRefGoogle Scholar
  7. 7.
    Hassan R, Thomas A, Alewine C, Le DT, Jaffee EM, Pastan I. Mesothelin immunotherapy for Cancer: ready for prime time? J Clin Oncol. 2016;34(34):4171–9.  https://doi.org/10.1200/JCO.2016.68.3672.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chang K, Pai LH, Batra JK, Pastan I, Willingham MC. Characterization of the antigen (CAK1) recognized by monoclonal antibody K1 present on ovarian cancers and normal mesothelium. Cancer Res. 1992;52(1):181–6.PubMedGoogle Scholar
  9. 9.
    Urwin D, Lake RA. Structure of the Mesothelin/MPF gene and characterization of its promoter. Mol Cell Biol Res Commun. 2000;3(1):26–32.  https://doi.org/10.1006/mcbr.2000.0181.PubMedCrossRefGoogle Scholar
  10. 10.
    Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci U S A. 1996;93(1):136–40.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yamaguchi N, Hattori K, Oh-eda M, Kojima T, Imai N, Ochi N. A novel cytokine exhibiting megakaryocyte potentiating activity from a human pancreatic tumor cell line HPC-Y5. J Biol Chem. 1994;269(2):805–8.PubMedGoogle Scholar
  12. 12.
    Kojima T, Oh-eda M, Hattori K, Taniguchi Y, Tamura M, Ochi N, et al. Molecular cloning and expression of megakaryocyte potentiating factor cDNA. J Biol Chem. 1995;270(37):21984–90.PubMedCrossRefGoogle Scholar
  13. 13.
    Scholler N, Fu N, Yang Y, Ye Z, Goodman GE, Hellstrom KE, et al. Soluble member(s) of the mesothelin/megakaryocyte potentiating factor family are detectable in sera from patients with ovarian carcinoma. Proc Natl Acad Sci U S A. 1999;96(20):11531–6.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hassan R, Bera T, Pastan I. Mesothelin: a new target for immunotherapy. Clin Cancer Res. 2004;10(12 Pt 1):3937–42.  https://doi.org/10.1158/1078-0432.CCR-03-0801. PubMedCrossRefGoogle Scholar
  15. 15.
    Sapede C, Gauvrit A, Barbieux I, Padieu M, Cellerin L, Sagan C, et al. Aberrant splicing and protease involvement in mesothelin release from epithelioid mesothelioma cells. Cancer Sci. 2008;99(3):590–4.  https://doi.org/10.1111/j.1349-7006.2007.00715.x.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang Y, Chertov O, Zhang J, Hassan R, Pastan I. Cytotoxic activity of immunotoxin SS1P is modulated by TACE-dependent mesothelin shedding. Cancer Res. 2011;71(17):5915–22.  https://doi.org/10.1158/0008-5472.CAN-11-0466.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Morello A, Sadelain M, Adusumilli PS. Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov. 2016;6(2):133–46.  https://doi.org/10.1158/2159-8290.CD-15-0583.PubMedCrossRefGoogle Scholar
  18. 18.
    Frierson HF Jr, Moskaluk CA, Powell SM, Zhang H, Cerilli LA, Stoler MH, et al. Large-scale molecular and tissue microarray analysis of mesothelin expression in common human carcinomas. Hum Pathol. 2003;34(6):605–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Rizk NP, Servais EL, Tang LH, Sima CS, Gerdes H, Fleisher M, et al. Tissue and serum mesothelin are potential markers of neoplastic progression in Barrett's associated esophageal adenocarcinoma. Cancer Epidemiol Biomark Prev. 2012;21(3):482–6.  https://doi.org/10.1158/1055-9965.EPI-11-0993.CrossRefGoogle Scholar
  20. 20.
    Servais EL, Colovos C, Rodriguez L, Bograd AJ, Nitadori J, Sima C, et al. Mesothelin overexpression promotes mesothelioma cell invasion and MMP-9 secretion in an orthotopic mouse model and in epithelioid pleural mesothelioma patients. Clin Cancer Res. 2012;18(9):2478–89.  https://doi.org/10.1158/1078-0432.CCR-11-2614.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pastan I, Hassan R. Discovery of mesothelin and exploiting it as a target for immunotherapy. Cancer Res. 2014;74(11):2907–12.  https://doi.org/10.1158/0008-5472.CAN-14-0337.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Tozbikian G, Brogi E, Kadota K, Catalano J, Akram M, Patil S, et al. Mesothelin expression in triple negative breast carcinomas correlates significantly with basal-like phenotype, distant metastases and decreased survival. PLoS One. 2014;9(12):e114900.  https://doi.org/10.1371/journal.pone.0114900.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kachala SS, Bograd AJ, Villena-Vargas J, Suzuki K, Servais EL, Kadota K, et al. Mesothelin overexpression is a marker of tumor aggressiveness and is associated with reduced recurrence-free and overall survival in early-stage lung adenocarcinoma. Clin Cancer Res. 2014;20(4):1020–8.  https://doi.org/10.1158/1078-0432.CCR-13-1862.PubMedCrossRefGoogle Scholar
  24. 24.
    Illei PB, Alewine C, Zahurak M, Cowan ML, Montgomery E, Hassan R, et al. Mesothelin expression in advanced gastroesophageal Cancer represents a novel target for immunotherapy. Appl Immunohistochem Mol Morphol. 2016;24(4):246–52.  https://doi.org/10.1097/PAI.0000000000000292.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chang K, Pastan I, Willingham MC. Isolation and characterization of a monoclonal antibody, K1, reactive with ovarian cancers and normal mesothelium. Int J Cancer. 1992;50(3):373–81.PubMedCrossRefGoogle Scholar
  26. 26.
    Chang K, Pastan I, Willingham MC. Frequent expression of the tumor antigen CAK1 in squamous-cell carcinomas. Int J Cancer. 1992;51(4):548–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Chang K, Pai LH, Pass H, Pogrebniak HW, Tsao MS, Pastan I, et al. Monoclonal antibody K1 reacts with epithelial mesothelioma but not with lung adenocarcinoma. Am J Surg Pathol. 1992;16(3):259–68.PubMedCrossRefGoogle Scholar
  28. 28.
    Ordonez NG. Value of mesothelin immunostaining in the diagnosis of mesothelioma. Mod Pathol. 2003;16(3):192–7.  https://doi.org/10.1097/01.MP.0000056981.16578.C3.PubMedCrossRefGoogle Scholar
  29. 29.
    Ordonez NG. Application of mesothelin immunostaining in tumor diagnosis. Am J Surg Pathol. 2003;27(11):1418–28.PubMedCrossRefGoogle Scholar
  30. 30.
    Einama T, Kawamata F, Kamachi H, Nishihara H, Homma S, Matsuzawa F, et al. Clinical impacts of mesothelin expression in gastrointestinal carcinomas. World J Gastrointest Pathophysiol. 2016;7(2):218–22.  https://doi.org/10.4291/wjgp.v7.i2.218.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Inaguma S, Wang Z, Lasota J, Onda M, Czapiewski P, Langfort R, et al. Comprehensive immunohistochemical study of mesothelin (MSLN) using different monoclonal antibodies 5B2 and MN-1 in 1562 tumors with evaluation of its prognostic value in malignant pleural mesothelioma. Oncotarget. 2017;8(16):26744–54.  https://doi.org/10.18632/oncotarget.15814.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, Wilentz RE, et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res. 2001;7(12):3862–8.PubMedGoogle Scholar
  33. 33.
    Ryu B, Jones J, Blades NJ, Parmigiani G, Hollingsworth MA, Hruban RH, et al. Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res. 2002;62(3):819–26.PubMedGoogle Scholar
  34. 34.
    Iacobuzio-Donahue CA, Ashfaq R, Maitra A, Adsay NV, Shen-Ong GL, Berg K, et al. Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res. 2003;63(24):8614–22.PubMedGoogle Scholar
  35. 35.
    Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT, Rosty C, et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol. 2003;162(4):1151–62.  https://doi.org/10.1016/S0002-9440(10)63911-9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Iacobuzio-Donahue CA, Swierczynski S, Maitra A. Progressive loss of mesothelin protein expression with advanced metastatic disease in patients with pancreatic ductal adenocarcinoma. Mod Pathol. 2003;16:276–7.Google Scholar
  37. 37.
    Sato N, Maitra A, Fukushima N, van Heek NT, Matsubayashi H, Iacobuzio-Donahue CA, et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 2003;63(14):4158–66.PubMedGoogle Scholar
  38. 38.
    Hucl T, Brody JR, Gallmeier E, Iacobuzio-Donahue CA, Farrance IK, Kern SE. High cancer-specific expression of mesothelin (MSLN) is attributable to an upstream enhancer containing a transcription enhancer factor dependent MCAT motif. Cancer Res. 2007;67(19):9055–65.  https://doi.org/10.1158/0008-5472.CAN-07-0474.PubMedCrossRefGoogle Scholar
  39. 39.
    Ren YR, Patel K, Paun BC, Kern SE. Structural analysis of the cancer-specific promoter in mesothelin and in other genes overexpressed in cancers. J Biol Chem. 2011;286(14):11960–9.  https://doi.org/10.1074/jbc.M110.193458.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Marin-Muller C, Li D, Bharadwaj U, Li M, Chen C, Hodges SE, et al. A tumorigenic factor interactome connected through tumor suppressor microRNA-198 in human pancreatic cancer. Clin Cancer Res. 2013;19(21):5901–13.  https://doi.org/10.1158/1078-0432.CCR-12-3776.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bera TK, Pastan I. Mesothelin is not required for normal mouse development or reproduction. Mol Cell Biol. 2000;20(8):2902–6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bharadwaj U, Li M, Chen C, Yao Q. Mesothelin-induced pancreatic cancer cell proliferation involves alteration of cyclin E via activation of signal transducer and activator of transcription protein 3. Mol Cancer Res. 2008;6(11):1755–65.  https://doi.org/10.1158/1541-7786.MCR-08-0095.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bharadwaj U, Marin-Muller C, Li M, Chen C, Yao Q. Mesothelin confers pancreatic cancer cell resistance to TNF-alpha-induced apoptosis through Akt/PI3K/NF-kappaB activation and IL-6/Mcl-1 overexpression. Mol Cancer. 2011;10:106.  https://doi.org/10.1186/1476-4598-10-106.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bharadwaj U, Marin-Muller C, Li M, Chen C, Yao Q. Mesothelin overexpression promotes autocrine IL-6/sIL-6R trans-signaling to stimulate pancreatic cancer cell proliferation. Carcinogenesis. 2011;32(7):1013–24.  https://doi.org/10.1093/carcin/bgr075.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Rump A, Morikawa Y, Tanaka M, Minami S, Umesaki N, Takeuchi M, et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem. 2004;279(10):9190–8.  https://doi.org/10.1074/jbc.M312372200.PubMedCrossRefGoogle Scholar
  46. 46.
    Gubbels JA, Belisle J, Onda M, Rancourt C, Migneault M, Ho M, et al. Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer. 2006;5(1):50.  https://doi.org/10.1186/1476-4598-5-50.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chen SH, Hung WC, Wang P, Paul C, Konstantopoulos K. Mesothelin binding to CA125/MUC16 promotes pancreatic cancer cell motility and invasion via MMP-7 activation. Sci Rep. 2013;3:1870.  https://doi.org/10.1038/srep01870.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Zervos E, Agle S, Freistaedter AG, Jones GJ, Roper RL. Murine mesothelin: characterization, expression, and inhibition of tumor growth in a murine model of pancreatic cancer. J Exp Clin Cancer Res. 2016;35:39.  https://doi.org/10.1186/s13046-016-0314-2.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Baruch AC, Wang H, Staerkel GA, Evans DB, Hwang RF, Krishnamurthy S. Immunocytochemical study of the expression of mesothelin in fine-needle aspiration biopsy specimens of pancreatic adenocarcinoma. Diagn Cytopathol. 2007;35(3):143–7.  https://doi.org/10.1002/dc.20594.PubMedCrossRefGoogle Scholar
  50. 50.
    Dim DC, Jiang F, Qiu Q, Li T, Darwin P, Rodgers WH, et al. The usefulness of S100P, mesothelin, fascin, prostate stem cell antigen, and 14-3-3 sigma in diagnosing pancreatic adenocarcinoma in cytological specimens obtained by endoscopic ultrasound guided fine-needle aspiration. Diagn Cytopathol. 2014;42(3):193–9.  https://doi.org/10.1002/dc.21684.PubMedCrossRefGoogle Scholar
  51. 51.
    McCarthy DM, Maitra A, Argani P, Rader AE, Faigel DO, Van Heek NT, et al. Novel markers of pancreatic adenocarcinoma in fine-needle aspiration: mesothelin and prostate stem cell antigen labeling increases accuracy in cytologically borderline cases. Appl Immunohistochem Mol Morphol. 2003;11(3):238–43.PubMedCrossRefGoogle Scholar
  52. 52.
    Agarwal B, Ludwig OJ, Collins BT, Cortese C. Immunostaining as an adjunct to cytology for diagnosis of pancreatic adenocarcinoma. Clin Gastroenterol Hepatol. 2008;6(12):1425–31.  https://doi.org/10.1016/j.cgh.2008.08.010.PubMedCrossRefGoogle Scholar
  53. 53.
    Layfield LJ, Ehya H, Filie AC, Hruban RH, Jhala N, Joseph L, et al. Utilization of ancillary studies in the cytologic diagnosis of biliary and pancreatic lesions: the Papanicolaou Society of Cytopathology guidelines for pancreatobiliary cytology. Diagn Cytopathol. 2014;42(4):351–62.  https://doi.org/10.1002/dc.23093.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Glass JP, Parasher G, Arias-Pulido H, Donohue R, Prossnitz ER, Cerilli LA. Mesothelin and GPR30 staining among a spectrum of pancreatic epithelial neoplasms. Int J Surg Pathol. 2011;19(5):588–96.  https://doi.org/10.1177/1066896911409575.PubMedCrossRefGoogle Scholar
  55. 55.
    Liu H, Shi J, Anandan V, Wang HL, Diehl D, Blansfield J, et al. Reevaluation and identification of the best immunohistochemical panel (pVHL, Maspin, S100P, IMP-3) for ductal adenocarcinoma of the pancreas. Arch Pathol Lab Med. 2012;136(6):601–9.  https://doi.org/10.5858/arpa.2011-0326-OA.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhu L, Liu Y, Chen G. Diagnostic value of mesothelinin pancreatic cancer: a meta-analysis. Int J Clin Exp Med. 2014;7(11):4000–7.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Ali A, Brown V, Denley S, Jamieson NB, Morton JP, Nixon C, et al. Expression of KOC, S100P, mesothelin and MUC1 in pancreatico-biliary adenocarcinomas: development and utility of a potential diagnostic immunohistochemistry panel. BMC Clin Pathol. 2014;14:35.  https://doi.org/10.1186/1472-6890-14-35.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Maitra A, Adsay NV, Argani P, Iacobuzio-Donahue C, De Marzo A, Cameron JL, et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol. 2003;16(9):902–12.  https://doi.org/10.1097/01.MP.0000086072.56290.FB.PubMedCrossRefGoogle Scholar
  59. 59.
    Frank R, Li S, Ahmad NA, Sepulveda AR, Jhala NC. Mesothelin expression in pancreatic mucinous cysts. Am J Clin Pathol. 2014;142(3):313–9.  https://doi.org/10.1309/AJCPDTTL2I5ECMFG.PubMedCrossRefGoogle Scholar
  60. 60.
    Sato N, Fukushima N, Maitra A, Iacobuzio-Donahue CA, van Heek NT, Cameron JL, et al. Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol. 2004;164(3):903–14.  https://doi.org/10.1016/S0002-9440(10)63178-1.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Basturk O, Chung SM, Hruban RH, Adsay NV, Askan G, Iacobuzio-Donahue C, et al. Distinct pathways of pathogenesis of intraductal oncocytic papillary neoplasms and intraductal papillary mucinous neoplasms of the pancreas. Virchows Arch. 2016;469(5):523–32.  https://doi.org/10.1007/s00428-016-2014-x.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Einama T, Kamachi H, Nishihara H, Homma S, Kanno H, Ishikawa M, et al. Importance of luminal membrane mesothelin expression in intraductal papillary mucinous neoplasms. Oncol Lett. 2015;9(4):1583–9.  https://doi.org/10.3892/ol.2015.2969.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Shimizu A, Hirono S, Tani M, Kawai M, Okada K, Miyazawa M, et al. Coexpression of MUC16 and mesothelin is related to the invasion process in pancreatic ductal adenocarcinoma. Cancer Sci. 2012;103(4):739–46.  https://doi.org/10.1111/j.1349-7006.2012.02214.x.PubMedCrossRefGoogle Scholar
  64. 64.
    Jhala N, Jhala D, Vickers SM, Eltoum I, Batra SK, Manne U, et al. Biomarkers in diagnosis of pancreatic carcinoma in fine-needle aspirates. Am J Clin Pathol. 2006;126(4):572–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Hassan R, Laszik ZG, Lerner M, Raffeld M, Postier R, Brackett D. Mesothelin is overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and chronic pancreatitis. Am J Clin Pathol. 2005;124(6):838–45.PubMedCrossRefGoogle Scholar
  66. 66.
    Ibrahim DA, Abouhashem NS. Diagnostic value of IMP3 and mesothelin in differentiating pancreatic ductal adenocarcinoma from chronic pancreatitis. Pathol Res Pract. 2016;212(4):288–93.  https://doi.org/10.1016/j.prp.2016.01.007.PubMedCrossRefGoogle Scholar
  67. 67.
    Chen Y, Zheng B, Robbins DH, Lewin DN, Mikhitarian K, Graham A, et al. Accurate discrimination of pancreatic ductal adenocarcinoma and chronic pancreatitis using multimarker expression data and samples obtained by minimally invasive fine needle aspiration. Int J Cancer. 2007;120(7):1511–7.  https://doi.org/10.1002/ijc.22487.PubMedCrossRefGoogle Scholar
  68. 68.
    Sopha SC, Gopal P, Merchant NB, Revetta FL, Gold DV, Washington K, et al. Diagnostic and therapeutic implications of a novel immunohistochemical panel detecting duodenal mucosal invasion by pancreatic ductal adenocarcinoma. Int J Clin Exp Pathol. 2013;6(11):2476–86.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Cao D, Ji H, Ronnett BM. Expression of mesothelin, fascin, and prostate stem cell antigen in primary ovarian mucinous tumors and their utility in differentiating primary ovarian mucinous tumors from metastatic pancreatic mucinous carcinomas in the ovary. Int J Gynecol Pathol. 2005;24(1):67–72.PubMedGoogle Scholar
  70. 70.
    Gnemmi V, Leroy X, Triboulet JP, Pruvot FR, Villers A, Leteurtre E, et al. Pancreatic metastases of renal clear cell carcinoma: a clinicopathological study of 11 cases with special emphasis on the usefulness of PAX2 and mesothelin for the distinction from primary ductal adenocarcinoma of the pancreas. Anal Quant Cytopathol Histpathol. 2013;35(3):157–62.PubMedGoogle Scholar
  71. 71.
    Hornick JL, Lauwers GY, Odze RD. Immunohistochemistry can help distinguish metastatic pancreatic adenocarcinomas from bile duct adenomas and hamartomas of the liver. Am J Surg Pathol. 2005;29(3):381–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Dennis JL, Hvidsten TR, Wit EC, Komorowski J, Bell AK, Downie I, et al. Markers of adenocarcinoma characteristic of the site of origin: development of a diagnostic algorithm. Clin Cancer Res. 2005;11(10):3766–72.  https://doi.org/10.1158/1078-0432.CCR-04-2236.PubMedCrossRefGoogle Scholar
  73. 73.
    Fukamachi K, Tanaka H, Hagiwara Y, Ohara H, Joh T, Iigo M, et al. An animal model of preclinical diagnosis of pancreatic ductal adenocarcinomas. Biochem Biophys Res Commun. 2009;390(3):636–41.  https://doi.org/10.1016/j.bbrc.2009.10.019.PubMedCrossRefGoogle Scholar
  74. 74.
    Fukamachi K, Iigo M, Hagiwara Y, Shibata K, Futakuchi M, Alexander DB, et al. Rat N-ERC/mesothelin as a marker for in vivo screening of drugs against pancreas cancer. PLoS One. 2014;9(10):e111481.  https://doi.org/10.1371/journal.pone.0111481.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kendrick ZW, Firpo MA, Repko RC, Scaife CL, Adler DG, Boucher KM, et al. Serum IGFBP2 and MSLN as diagnostic and prognostic biomarkers for pancreatic cancer. HPB (Oxford). 2014;16(7):670–6.  https://doi.org/10.1111/hpb.12199.PubMedCrossRefGoogle Scholar
  76. 76.
    Johnston FM, Tan MC, Tan BR Jr, Porembka MR, Brunt EM, Linehan DC, et al. Circulating mesothelin protein and cellular antimesothelin immunity in patients with pancreatic cancer. Clin Cancer Res. 2009;15(21):6511–8.  https://doi.org/10.1158/1078-0432.CCR-09-0565.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sharon E, Zhang J, Hollevoet K, Steinberg SM, Pastan I, Onda M, et al. Serum mesothelin and megakaryocyte potentiating factor in pancreatic and biliary cancers. Clin Chem Lab Med. 2012;50(4):721–5.  https://doi.org/10.1515/CCLM.2011.816. PubMedCrossRefGoogle Scholar
  78. 78.
    Inami K, Kajino K, Abe M, Hagiwara Y, Maeda M, Suyama M, et al. Secretion of N-ERC/mesothelin and expression of C-ERC/mesothelin in human pancreatic ductal carcinoma. Oncol Rep. 2008;20(6):1375–80.PubMedGoogle Scholar
  79. 79.
    Watanabe H, Okada G, Ohtsubo K, Yamaguchi Y, Mouri H, Motoo Y, et al. Expression of mesothelin mRNA in pure pancreatic juice from patients with pancreatic carcinoma, intraductal papillary mucinous neoplasm of the pancreas, and chronic pancreatitis. Pancreas. 2005;30(4):349–54.PubMedCrossRefGoogle Scholar
  80. 80.
    Winter JM, Tang LH, Klimstra DS, Brennan MF, Brody JR, Rocha FG, et al. A novel survival-based tissue microarray of pancreatic cancer validates MUC1 and mesothelin as biomarkers. PLoS One. 2012;7(7):e40157.  https://doi.org/10.1371/journal.pone.0040157.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Einama T, Kamachi H, Nishihara H, Homma S, Kanno H, Takahashi K, et al. Co-expression of mesothelin and CA125 correlates with unfavorable patient outcome in pancreatic ductal adenocarcinoma. Pancreas. 2011;40(8):1276–82.  https://doi.org/10.1097/MPA.0b013e318221bed8.PubMedCrossRefGoogle Scholar
  82. 82.
    Petrushnko W, Gundara JS, De Reuver PR, O'Grady G, Samra JS, Mittal A. Systematic review of peri-operative prognostic biomarkers in pancreatic ductal adenocarcinoma. HPB (Oxford). 2016;18(8):652–63.  https://doi.org/10.1016/j.hpb.2016.05.004.CrossRefGoogle Scholar
  83. 83.
    Hassan R, Alewine C, Pastan I. New life for immunotoxin Cancer therapy. Clin Cancer Res. 2016;22(5):1055–8.  https://doi.org/10.1158/1078-0432.CCR-15-1623.PubMedCrossRefGoogle Scholar
  84. 84.
    Hassan R, Lerner MR, Benbrook D, Lightfoot SA, Brackett DJ, Wang QC, et al. Antitumor activity of SS(dsFv)PE38 and SS1(dsFv)PE38, recombinant antimesothelin immunotoxins against human gynecologic cancers grown in organotypic culture in vitro. Clin Cancer Res. 2002;8(11):3520–6.PubMedGoogle Scholar
  85. 85.
    Li Q, Verschraegen CF, Mendoza J, Hassan R. Cytotoxic activity of the recombinant anti-mesothelin immunotoxin, SS1(dsFv)PE38, towards tumor cell lines established from ascites of patients with peritoneal mesotheliomas. Anticancer Res. 2004;24(3a):1327–35.PubMedGoogle Scholar
  86. 86.
    Hassan R, Broaddus VC, Wilson S, Liewehr DJ, Zhang J. Anti-mesothelin immunotoxin SS1P in combination with gemcitabine results in increased activity against mesothelin-expressing tumor xenografts. Clin Cancer Res. 2007;13(23):7166–71.  https://doi.org/10.1158/1078-0432.CCR-07-1592.PubMedCrossRefGoogle Scholar
  87. 87.
    Du X, Xiang L, Mackall C, Pastan I. Killing of resistant cancer cells with low Bak by a combination of an antimesothelin immunotoxin and a TRAIL receptor 2 agonist antibody. Clin Cancer Res. 2011;17(18):5926–34.  https://doi.org/10.1158/1078-0432.CCR-11-1235.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Mattoo AR, Pastan I, Fitzgerald D. Combination treatments with the PKC inhibitor, enzastaurin, enhance the cytotoxicity of the anti-mesothelin immunotoxin, SS1P. PLoS One. 2013;8(10):e75576.  https://doi.org/10.1371/journal.pone.0075576.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Hollevoet K, Antignani A, Fitzgerald DJ, Pastan I. Combining the antimesothelin immunotoxin SS1P with the BH3-mimetic ABT-737 induces cell death in SS1P-resistant pancreatic cancer cells. J Immunother. 2014;37(1):8–15.  https://doi.org/10.1097/CJI.0000000000000010.PubMedCrossRefGoogle Scholar
  90. 90.
    Hassan R, Bullock S, Premkumar A, Kreitman RJ, Kindler H, Willingham MC, et al. Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. Infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res. 2007;13(17):5144–9.  https://doi.org/10.1158/1078-0432.CCR-07-0869.PubMedCrossRefGoogle Scholar
  91. 91.
    Kreitman RJ, Hassan R, Fitzgerald DJ, Pastan I. Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P. Clin Cancer Res. 2009;15(16):5274–9.  https://doi.org/10.1158/1078-0432.CCR-09-0062.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Mossoba ME, Onda M, Taylor J, Massey PR, Treadwell S, Sharon E, et al. Pentostatin plus cyclophosphamide safely and effectively prevents immunotoxin immunogenicity in murine hosts. Clin Cancer Res. 2011;17(11):3697–705.  https://doi.org/10.1158/1078-0432.CCR-11-0493.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Hassan R, Miller AC, Sharon E, Thomas A, Reynolds JC, Ling A, et al. Major cancer regressions in mesothelioma after treatment with an anti-mesothelin immunotoxin and immune suppression. Sci Transl Med. 2013;5(208):208ra147.  https://doi.org/10.1126/scitranslmed.3006941.PubMedCrossRefGoogle Scholar
  94. 94.
    Bauss F, Lechmann M, Krippendorff BF, Staack R, Herting F, Festag M, et al. Characterization of a re-engineered, mesothelin-targeted Pseudomonas exotoxin fusion protein for lung cancer therapy. Mol Oncol. 2016;10(8):1317–29.  https://doi.org/10.1016/j.molonc.2016.07.003.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Alewine C, Xiang L, Yamori T, Niederfellner G, Bosslet K, Pastan I. Efficacy of RG7787, a next-generation mesothelin-targeted immunotoxin, against triple-negative breast and gastric cancers. Mol Cancer Ther. 2014;13(11):2653–61.  https://doi.org/10.1158/1535-7163.MCT-14-0132.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Hollevoet K, Mason-Osann E, Liu XF, Imhof-Jung S, Niederfellner G, Pastan I. In vitro and in vivo activity of the low-immunogenic antimesothelin immunotoxin RG7787 in pancreatic cancer. Mol Cancer Ther. 2014;13(8):2040–9.  https://doi.org/10.1158/1535-7163.MCT-14-0089-T.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hollevoet K, Mason-Osann E, Muller F, Pastan I. Methylation-associated partial down-regulation of mesothelin causes resistance to anti-mesothelin immunotoxins in a pancreatic cancer cell line. PLoS One. 2015;10(3):e0122462.  https://doi.org/10.1371/journal.pone.0122462.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Liu XF, Xiang L, Zhou Q, Carralot JP, Prunotto M, Niederfellner G, et al. Actinomycin D enhances killing of cancer cells by immunotoxin RG7787 through activation of the extrinsic pathway of apoptosis. Proc Natl Acad Sci U S A. 2016;113(38):10666–71.  https://doi.org/10.1073/pnas.1611481113.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Liu XF, Zhou Q, Hassan R, Pastan I. Panbinostat decreases cFLIP and enhances killing of cancer cells by immunotoxin LMB-100 by stimulating the extrinsic apoptotic pathway. Oncotarget. 2017;8(50):87307–16.  https://doi.org/10.18632/oncotarget.20263. PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kolyvas E, Rudloff M, Poruchynsky M, Landsman R, Hollevoet K, Venzon D, et al. Mesothelin-targeted immunotoxin RG7787 has synergistic anti-tumor activity when combined with taxanes. Oncotarget. 2017;8(6):9189–99.  https://doi.org/10.18632/oncotarget.13984. PubMedCrossRefGoogle Scholar
  101. 101.
    Ali-Rahmani F, FitzGerald DJ, Martin S, Patel P, Prunotto M, Ormanoglu P, et al. Anticancer effects of Mesothelin-targeted immunotoxin therapy are regulated by tyrosine kinase DDR1. Cancer Res. 2016;76(6):1560–8.  https://doi.org/10.1158/0008-5472.CAN-15-2401.PubMedCrossRefGoogle Scholar
  102. 102.
    Leshem Y, O'Brien J, Liu X, Bera TK, Terabe M, Berzofsky JA, et al. Combining local immunotoxins targeting Mesothelin with CTLA-4 blockade synergistically eradicates murine Cancer by promoting anticancer immunity. Cancer Immunol Res. 2017;5(8):685–94.  https://doi.org/10.1158/2326-6066.CIR-16-0330.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Hassan R, Ebel W, Routhier EL, Patel R, Kline JB, Zhang J, et al. Preclinical evaluation of MORAb-009, a chimeric antibody targeting tumor-associated mesothelin. Cancer Immun. 2007;7:20.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Hassan R, Cohen SJ, Phillips M, Pastan I, Sharon E, Kelly RJ, et al. Phase I clinical trial of the chimeric anti-mesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers. Clin Cancer Res. 2010;16(24):6132–8.  https://doi.org/10.1158/1078-0432.CCR-10-2275.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Fujisaka Y, Kurata T, Tanaka K, Kudo T, Okamoto K, Tsurutani J, et al. Phase I study of amatuximab, a novel monoclonal antibody to mesothelin, in Japanese patients with advanced solid tumors. Investig New Drugs. 2015;33(2):380–8.  https://doi.org/10.1007/s10637-014-0196-0.CrossRefGoogle Scholar
  106. 106.
    US National Library of Medicine. ClinicalTrials.gov [online]. https://clinicaltrials.gov/ct2/show/NCT00570713.
  107. 107.
    Lindenberg L, Thomas A, Adler S, Mena E, Kurdziel K, Maltzman J, et al. Safety and biodistribution of 111In-amatuximab in patients with mesothelin expressing cancers using single photon emission computed tomography-computed tomography (SPECT-CT) imaging. Oncotarget. 2015;6(6):4496–504.  https://doi.org/10.18632/oncotarget.2883. PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Golfier S, Kopitz C, Kahnert A, Heisler I, Schatz CA, Stelte-Ludwig B, et al. Anetumab ravtansine: a novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol Cancer Ther. 2014;13(6):1537–48.  https://doi.org/10.1158/1535-7163.MCT-13-0926.PubMedCrossRefGoogle Scholar
  109. 109.
    Hassan RBG, Kindler HR, et al. Phase I study of anti-Mesothelin antibody drug conjugate Anetumab Ravtansine. Presented at the 16th world conference on lung Cancer, Denver, CO, September 6–9, 2015.Google Scholar
  110. 110.
    Blumenschein GR, Hassan R, Moore KN, Santin A, Kindler HL, Nemunaitis JJ, et al. Phase I study of anti-mesothelin antibody drug conjugate anetumab ravtansine (AR). J Clin Oncol. 2016;34(15_suppl):2509.  https://doi.org/10.1200/JCO.2016.34.15_suppl.2509.CrossRefGoogle Scholar
  111. 111.
    Scales SJ, Gupta N, Pacheco G, Firestein R, French DM, Koeppen H, et al. An antimesothelin-monomethyl auristatin e conjugate with potent antitumor activity in ovarian, pancreatic, and mesothelioma models. Mol Cancer Ther. 2014;13(11):2630–40.  https://doi.org/10.1158/1535-7163.MCT-14-0487-T.PubMedCrossRefGoogle Scholar
  112. 112.
    Weekes CD, Lamberts LE, Borad MJ, Voortman J, McWilliams RR, Diamond JR, et al. Phase I study of DMOT4039A, an antibody-drug conjugate targeting Mesothelin, in patients with unresectable pancreatic or platinum-resistant ovarian Cancer. Mol Cancer Ther. 2016;15(3):439–47.  https://doi.org/10.1158/1535-7163.MCT-15-0693.PubMedCrossRefGoogle Scholar
  113. 113.
    Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA. The pancreas cancer microenvironment. Clin Cancer Res. 2012;18(16):4266–76.  https://doi.org/10.1158/1078-0432.CCR-11-3114.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    ter Weele EJ, Terwisscha van Scheltinga AG, Kosterink JG, Pot L, Vedelaar SR, Lamberts LE, et al. Imaging the distribution of an antibody-drug conjugate constituent targeting mesothelin with (8)(9)Zr and IRDye 800CW in mice bearing human pancreatic tumor xenografts. Oncotarget. 2015;6(39):42081–90.  https://doi.org/10.18632/oncotarget.5877. PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Lamberts LE, Menke-van der Houven van Oordt CW, ter Weele EJ, Bensch F, Smeenk MM, Voortman J, et al. ImmunoPET with anti-Mesothelin antibody in patients with pancreatic and ovarian Cancer before anti-Mesothelin antibody-drug conjugate treatment. Clin Cancer Res. 2016;22(7):1642–52.  https://doi.org/10.1158/1078-0432.CCR-15-1272.PubMedCrossRefGoogle Scholar
  116. 116.
    Terwisscha van Scheltinga AG, Ogasawara A, Pacheco G, Vanderbilt AN, Tinianow JN, Gupta N, et al. Preclinical efficacy of an antibody-drug conjugate targeting Mesothelin correlates with quantitative 89Zr-ImmunoPET. Mol Cancer Ther. 2017;16(1):134–42.  https://doi.org/10.1158/1535-7163.MCT-16-0449.PubMedCrossRefGoogle Scholar
  117. 117.
    Gerber HP, Sapra P, Loganzo F, May C. Combining antibody-drug conjugates and immune-mediated cancer therapy: what to expect? Biochem Pharmacol. 2016;102:1–6.  https://doi.org/10.1016/j.bcp.2015.12.008.PubMedCrossRefGoogle Scholar
  118. 118.
    Rao C, Huber M, Vemuri K, Zhang Q, Chen B, Phillips J, et al. Abstract #3235: efficacy and toxicity of an anti-mesothelin antibody drug conjugate. Cancer Res. 2014;69(9 Supplement):3235.Google Scholar
  119. 119.
    Zhao XY, Subramanyam B, Sarapa N, Golfier S, Dinter H. Novel antibody therapeutics targeting Mesothelin in solid tumors. Clin Cancer Drugs. 2016;3(2):76–86.  https://doi.org/10.2174/2212697X03666160218215744.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res. 2013;119:421–75.  https://doi.org/10.1016/B978-0-12-407190-2.00007-1.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11(9):509–24.  https://doi.org/10.1038/nrclinonc.2014.111.PubMedCrossRefGoogle Scholar
  122. 122.
    Amedei A, Niccolai E, Prisco D. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy. Hum Vaccin Immunother. 2014;10(11):3354–68.  https://doi.org/10.4161/hv.34392.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Chang CL, Wu TC, Hung CF. Control of human mesothelin-expressing tumors by DNA vaccines. Gene Ther. 2007;14(16):1189–98.  https://doi.org/10.1038/sj.gt.3302974.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Leao IC, Ganesan P, Armstrong TD, Jaffee EM. Effective depletion of regulatory T cells allows the recruitment of mesothelin-specific CD8 T cells to the antitumor immune response against a mesothelin-expressing mouse pancreatic adenocarcinoma. Clin Transl Sci. 2008;1(3):228–39.  https://doi.org/10.1111/j.1752-8062.2008.00070.x.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Li M, Bharadwaj U, Zhang R, Zhang S, Mu H, Fisher WE, et al. Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer. Mol Cancer Ther. 2008;7(2):286–96.  https://doi.org/10.1158/1535-7163.MCT-07-0483.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Showalter SL, Huang YH, Witkiewicz A, Costantino CL, Yeo CJ, Green JJ, et al. Nanoparticulate delivery of diphtheria toxin DNA effectively kills Mesothelin expressing pancreatic cancer cells. Cancer Biol Ther. 2008;7(10):1584–90.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Miyazawa M, Iwahashi M, Ojima T, Katsuda M, Nakamura M, Nakamori M, et al. Dendritic cells adenovirally-transduced with full-length mesothelin cDNA elicit mesothelin-specific cytotoxicity against pancreatic cancer cell lines in vitro. Cancer Lett. 2011;305(1):32–9.  https://doi.org/10.1016/j.canlet.2011.02.013.PubMedCrossRefGoogle Scholar
  128. 128.
    Yamasaki S, Miura Y, Davydova J, Vickers SM, Yamamoto M. Intravenous genetic mesothelin vaccine based on human adenovirus 40 inhibits growth and metastasis of pancreatic cancer. Int J Cancer. 2013;133(1):88–97.  https://doi.org/10.1002/ijc.27983.PubMedCrossRefGoogle Scholar
  129. 129.
    Zhang S, Yong LK, Li D, Cubas R, Chen C, Yao Q. Mesothelin virus-like particle immunization controls pancreatic cancer growth through CD8+ T cell induction and reduction in the frequency of CD4+ foxp3+ ICOS- regulatory T cells. PLoS One. 2013;8(7):e68303.  https://doi.org/10.1371/journal.pone.0068303.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR, et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol. 2001;19(1):145–56.  https://doi.org/10.1200/JCO.2001.19.1.145.PubMedCrossRefGoogle Scholar
  131. 131.
    Thomas AM, Santarsiero LM, Lutz ER, Armstrong TD, Chen YC, Huang LQ, et al. Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J Exp Med. 2004;200(3):297–306.  https://doi.org/10.1084/jem.20031435.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Lutz E, Yeo CJ, Lillemoe KD, Biedrzycki B, Kobrin B, Herman J, et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A phase II trial of safety, efficacy, and immune activation. Ann Surg. 2011;253(2):328–35.  https://doi.org/10.1097/SLA.0b013e3181fd271c.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 2013;36(7):382–9.  https://doi.org/10.1097/CJI.0b013e31829fb7a2.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Rossi GR, Rocha Lima CMS, Hardacre JM, Mulcahy MF, Talamonti MS, Obel JC, et al. Correlation of anti-calreticulin antibody titers with improved overall survival in a phase 2 clinical trial of algenpantucel-L immunotherapy for patients with resected pancreatic cancer. J Clin Oncol. 2014;32(15_suppl):3029.  https://doi.org/10.1200/jco.2014.32.15_suppl.3029.CrossRefGoogle Scholar
  135. 135.
    Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A. 2004;101(38):13832–7.  https://doi.org/10.1073/pnas.0406035101.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Le DT, Brockstedt DG, Nir-Paz R, Hampl J, Mathur S, Nemunaitis J, et al. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res. 2012;18(3):858–68.  https://doi.org/10.1158/1078-0432.CCR-11-2121.PubMedCrossRefGoogle Scholar
  137. 137.
    Laheru D, Lutz E, Burke J, Biedrzycki B, Solt S, Onners B, et al. Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res. 2008;14(5):1455–63.  https://doi.org/10.1158/1078-0432.CCR-07-0371.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol. 2015;33(12):1325–33.  https://doi.org/10.1200/JCO.2014.57.4244.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Le DT, Ko AH, Wainberg ZA, Picozzi VJ, Kindler HL, Wang-Gillam A, et al. Results from a phase 2b, randomized, multicenter study of GVAX pancreas and CRS-207 compared to chemotherapy in adults with previously-treated metastatic pancreatic adenocarcinoma (ECLIPSE study). J Clin Oncol. 2017;35(4_suppl):345.  https://doi.org/10.1200/JCO.2017.35.4_suppl.345.CrossRefGoogle Scholar
  140. 140.
    Zheng L, Xue J, Jaffee EM, Habtezion A. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterology. 2013;144(6):1230–40.  https://doi.org/10.1053/j.gastro.2012.12.042.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G, Soares K, et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res. 2014;2(7):616–31.  https://doi.org/10.1158/2326-6066.CIR-14-0027.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y, et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother. 2015;38(1):1–11.  https://doi.org/10.1097/CJI.0000000000000062. PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–8.  https://doi.org/10.1126/science.aaa4967.PubMedCrossRefGoogle Scholar
  144. 144.
    Perica K, Varela JC, Oelke M, Schneck J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J. 2015;6(1):e0004.  https://doi.org/10.5041/RMMJ.10179.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 2017;27(1):38–58.  https://doi.org/10.1038/cr.2016.154.PubMedCrossRefGoogle Scholar
  146. 146.
    Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98.  https://doi.org/10.1158/2159-8290.CD-12-0548.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Ryschich E, Notzel T, Hinz U, Autschbach F, Ferguson J, Simon I, et al. Control of T-cell-mediated immune response by HLA class I in human pancreatic carcinoma. Clin Cancer Res. 2005;11(2 Pt 1):498–504.PubMedGoogle Scholar
  148. 148.
    Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86(24):10024–8.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015;14(7):499–509.  https://doi.org/10.1038/nrd4597.PubMedCrossRefGoogle Scholar
  150. 150.
    Zhao Z, Condomines M, van der Stegen SJ, Perna F, Kloss CC, Gunset G, et al. Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T cells. Cancer Cell. 2015;28(4):415–28.  https://doi.org/10.1016/j.ccell.2015.09.004.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    DeSelm CJ, Tano ZE, Varghese AM, Adusumilli PS. CAR T-cell therapy for pancreatic cancer. J Surg Oncol. 2017;116(1):63–74.  https://doi.org/10.1002/jso.24627.PubMedCrossRefGoogle Scholar
  152. 152.
    O'Hara M, Stashwick C, Haas AR, Tanyi JL. Mesothelin as a target for chimeric antigen receptor-modified T cells as anticancer therapy. Immunotherapy. 2016;8(4):449–60.  https://doi.org/10.2217/imt.16.4.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Stromnes IM, Schmitt TM, Hulbert A, Brockenbrough JS, Nguyen H, Cuevas C, et al. T cells engineered against a native antigen can surmount immunologic and physical barriers to treat pancreatic ductal adenocarcinoma. Cancer Cell. 2015;28(5):638–52.  https://doi.org/10.1016/j.ccell.2015.09.022.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Jiang H, Song B, Wang P, Shi B, Li Q, Fan M, et al. Efficient growth suppression in pancreatic cancer PDX model by fully human anti-mesothelin CAR-T cells. Protein Cell. 2017;  https://doi.org/10.1007/s13238-017-0472-9.
  155. 155.
    Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res. 2014;2(2):112–20.  https://doi.org/10.1158/2326-6066.CIR-13-0170.PubMedCrossRefGoogle Scholar
  156. 156.
    Beatty GL, O'Hara MH, Nelson AM, McGarvey M, Torigian DA, Lacey SF, et al. Safety and antitumor activity of chimeric antigen receptor modified T cells in patients with chemotherapy refractory metastatic pancreatic cancer. J Clin Oncol. 2015;33(15_suppl):3007.  https://doi.org/10.1200/jco.2015.33.15_suppl.3007.CrossRefGoogle Scholar
  157. 157.
    Johnson BA 3rd, Yarchoan M, Lee V, Laheru DA, Jaffee EM. Strategies for increasing pancreatic tumor immunogenicity. Clin Cancer Res. 2017;23(7):1656–69.  https://doi.org/10.1158/1078-0432.CCR-16-2318.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21(4):687–92.  https://doi.org/10.1158/1078-0432.CCR-14-1860.PubMedCrossRefGoogle Scholar
  159. 159.
    Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 2013;108(4):914–23.  https://doi.org/10.1038/bjc.2013.32.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10(1):53.  https://doi.org/10.1186/s13045-017-0423-1.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical OncologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  2. 2.Medical Oncology UnitAzienda Ospedaliera San PaoloMilanItaly
  3. 3.Medical Oncology UnitAzienda Ospedaliera San GerardoMonzaItaly
  4. 4.Department of OncologyUniversità degli Studi di MilanoMilanItaly

Personalised recommendations