Advertisement

Targeted Oncology

, Volume 13, Issue 3, pp 287–308 | Cite as

Antibody–Drug Conjugates for the Treatment of Hematological Malignancies: A Comprehensive Review

  • Cédric Rossi
  • Marie-Lorraine Chrétien
  • René-Olivier Casasnovas
Review Article

Abstract

Antibody–drug conjugates (ADCs) are an emerging class of therapeutic agents that bring new opportunities for the treatment of hematological malignancies by meeting unmet medical needs. These drugs consist of a cytotoxic agent connected by a linker to a human, humanized, or chimeric antibody targeting a surface antigen specifically expressed by tumor cells. These ADCs are being developed to specifically deliver the cytotoxic agent into tumor cells. The cytotoxic payload is released from the ADC after internalization and cleavage of the linker, ultimately triggering the death of the cancer cell. Second- and even third-generation ADCs are currently being developed and have more stable linkers and more potent payloads, which should improve ADC efficacy even further. In this review, we analyze the results for the main ADCs currently developed and discuss the advantages and drawbacks of this therapeutic option.

Notes

Acknowledgements

We thank Philip Bastable for his English writing assistance.

Compliance with Ethical Standards

Funding

None.

Conflict of interest

R.-O. Casasnovas received honoraria from Roche, Takeda, Gilead, and research funding from Roche and Gilead, and had a consulting role for Roche, Takeda, Gilead, Abbvie, BMS, and Merck. C. Rossi had a consulting role for Takeda and research funding from Roche. M.-L. Chrétien has no disclosures to declare.

References

  1. 1.
    Teicher BA, Chari RVJ. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res. 2011;17(20):6389–97.PubMedGoogle Scholar
  2. 2.
    Lambert JM. Drug-conjugated antibodies for the treatment of cancer. Br J Clin Pharmacol. 2013;76(2):248–62.PubMedGoogle Scholar
  3. 3.
    Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37.PubMedGoogle Scholar
  4. 4.
    Hamblett KJ, Senter PD, Chace DF, Sun MMC, Lenox J, Cerveny CG, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10(20):7063–70.PubMedGoogle Scholar
  5. 5.
    Kupchan SM, Komoda Y, Court WA, Thomas GJ, Smith RM, Karim A, et al. Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J Am Chem Soc. 1972;94(4):1354–6.PubMedGoogle Scholar
  6. 6.
    Jabbour E, O’Brien S, Ravandi F, Kantarjian H. Monoclonal antibodies in acute lymphoblastic leukemia. Blood. 2015;125(26):4010–6.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Maderna A, Doroski M, Subramanyam C, Porte A, Leverett CA, Vetelino BC, et al. Discovery of cytotoxic dolastatin 10 analogues with N-terminal modifications. J Med Chem. 2014;57(24):10527–43.PubMedGoogle Scholar
  8. 8.
    Wang H, Rangan VS, Sung M-C, Passmore D, Kempe T, Wang X, et al. Pharmacokinetic characterization of BMS-936561, an anti-CD70 antibody-drug conjugate, in preclinical animal species and prediction of its pharmacokinetics in humans. Biopharm Drug Dispos. 2016;37(2):93–106.PubMedGoogle Scholar
  9. 9.
    Pirker R, FitzGerald DJ, Hamilton TC, Ozols RF, Laird W, Frankel AE, et al. Characterization of immunotoxins active against ovarian cancer cell lines. J Clin Invest. 1985;76(3):1261–7.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Feld J, Barta SK, Schinke C, Braunschweig I, Zhou Y, Verma A. Linked-in: design and efficacy of antibody drug conjugates in oncology. Oncotarget. 2013;4(3):397–412.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Patil R, Portilla-Arias J, Ding H, Konda B, Rekechenetskiy A, Inoue S, et al. Cellular delivery of doxorubicin via pH-controlled hydrazone linkage using multifunctional nano vehicle based on poly(β-l-malic acid). Int J Mol Sci. 2012;13(9):11681–93.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Balendiran GK, Dabur R, Fraser D. The role of glutathione in cancer. Cell Biochem Funct. 2004;22(6):343–52.PubMedGoogle Scholar
  13. 13.
    Sanderson RJ, Hering MA, James SF, Sun MMC, Doronina SO, Siadak AW, et al. In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res. 2005;11(2 Pt 1):843–52.PubMedGoogle Scholar
  14. 14.
    Polson AG, Calemine-Fenaux J, Chan P, Chang W, Christensen E, Clark S, et al. Antibody-drug conjugates for the treatment of non-Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res. 2009;69(6):2358–64.PubMedGoogle Scholar
  15. 15.
    Peters C, Brown S. Antibody–drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35(4):e00225.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kantarjian HM, Lioure B, Kim SK, Atallah E, Leguay T, Kelly K, et al. A phase II study of coltuximab ravtansine (SAR3419) monotherapy in patients with relapsed or refractory acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2016;16(3):139–45.PubMedGoogle Scholar
  17. 17.
    Coiffier B, Thieblemont C, de Guibert S, Dupuis J, Ribrag V, Bouabdallah R, et al. A phase II, single-arm, multicentre study of coltuximab ravtansine (SAR3419) and rituximab in patients with relapsed or refractory diffuse large B-cell lymphoma. Br J Haematol. 2016;173(5):722–30.PubMedGoogle Scholar
  18. 18.
    Advani A, Coiffier B, Czuczman MS, Dreyling M, Foran J, Gine E, et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study. J Clin Oncol. 2010;28(12):2085–93.PubMedGoogle Scholar
  19. 19.
    Fayad L, Offner F, Smith MR, Verhoef G, Johnson P, Kaufman JL, et al. Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-Hodgkin lymphoma: results of a phase I/II study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab. J Clin Oncol. 2013;31(5):573–83.Google Scholar
  20. 20.
    Wagner-Johnston ND, Goy A, Rodriguez MA, Ehmann WC, Hamlin PA, Radford J, et al. A phase 2 study of inotuzumab ozogamicin and rituximab, followed by autologous stem cell transplant in patients with relapsed/refractory diffuse large B-cell lymphoma. Leuk Lymphoma. 2015;56(10):2863–9.Google Scholar
  21. 21.
    Ogura M, Tobinai K, Hatake K, Davies A, Crump M, Ananthakrishnan R, et al. Phase I Study of Inotuzumab Ozogamicin Combined with R-CVP for Relapsed/Refractory CD22+ B-cell Non-Hodgkin Lymphoma. Clin Cancer Res. 2016;22(19):4807–16.Google Scholar
  22. 22.
    Dang NH, Ogura M, Castaigne S, Fayad LE, Jerkeman M, Radford J, et al. Randomized, phase 3 trial of inotuzumab ozogamicin plus rituximab versus chemotherapy plus rituximab for relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Br J Haematol. 2017.Google Scholar
  23. 23.
    Kantarjian H, Thomas D, Jorgensen J, Jabbour E, Kebriaei P, Rytting M, et al. Inotuzumab ozogamicin, an anti-CD22–calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–11.PubMedGoogle Scholar
  24. 24.
    Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Christian BA, Poi M, Jones JA, Porcu P, Maddocks K, Flynn JM, et al. The combination of milatuzumab, a humanized anti-CD74 antibody, and veltuzumab, a humanized anti-CD20 antibody, demonstrates activity in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Br J Haematol. 2015;169(5):701–10.Google Scholar
  26. 26.
    Tedder TF, Inaoki M, Sato S. The CD19–CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity. 1997;6(2):107–18.PubMedGoogle Scholar
  27. 27.
    Scheuermann RH, Racila E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma. 1995;18(5–6):385–97.PubMedGoogle Scholar
  28. 28.
    Anderson KC, Bates MP, Slaughenhoupt BL, Pinkus GS, Schlossman SF, Nadler LM. Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood. 1984;63(6):1424–33.PubMedGoogle Scholar
  29. 29.
    Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JM. SAR3419: an anti-CD19-maytansinoid immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res. 2011;17(20):6448–58.PubMedGoogle Scholar
  30. 30.
    Hong EE, Erickson H, Lutz RJ, Whiteman KR, Jones G, Kovtun Y, et al. Design of coltuximab ravtansine, a CD19-targeting antibody–drug conjugate (ADC) for the treatment of B-cell malignancies: structure–activity relationships and preclinical evaluation. Mol Pharm. 2015;12(6):1703–16.PubMedGoogle Scholar
  31. 31.
    Younes A, Kim S, Romaguera J, Copeland A, de Castro Farial, Kwak LW, et al. Phase I multidose-escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B-cell lymphoma. J Clin Oncol. 2012;30(22):2776–82.Google Scholar
  32. 32.
    Ribrag V, Dupuis J, Tilly H, Morschhauser F, Laine F, Houot R, et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2014;20(1):213–20.PubMedGoogle Scholar
  33. 33.
    Carol H, Szymanska B, Evans K, Boehm I, Houghton PJ, Smith MA, et al. The anti-CD19 antibody–drug conjugate SAR3419 prevents hematolymphoid relapse postinduction therapy in preclinical models of pediatric acute lymphoblastic leukemia. Clin Cancer Res. 2013;19(7):1795–805.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Fathi AT, Chen R, Trippett TM, O’Brien MM, DeAngelo DJ, Shah BD, et al. Interim analysis of a phase 1 study of the antibody-drug conjugate SGN-CD19A in relapsed or refractory B-lineage acute leukemia and highly aggressive lymphoma. Blood. 2014;124(21):963.Google Scholar
  35. 35.
    Farhadfar N, Litzow MR. New monoclonal antibodies for the treatment of acute lymphoblastic leukemia. Leuk Res. 2016;49:13–21.PubMedGoogle Scholar
  36. 36.
    DiJoseph JF, Popplewell A, Tickle S, Ladyman H, Lawson A, Kunz A, et al. Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother. 2005;54(1):11–24.PubMedGoogle Scholar
  37. 37.
    Damle NK. Tumour-targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin Biol Ther. 2004;4(9):1445–52.PubMedGoogle Scholar
  38. 38.
    DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103(5):1807–14.PubMedGoogle Scholar
  39. 39.
    DiJoseph JF, Goad ME, Dougher MM, Boghaert ER, Kunz A, Hamann PR, et al. Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res. 2004;10(24):8620–9.PubMedGoogle Scholar
  40. 40.
    DiJoseph JF, Dougher MM, Evans DY, Zhou B-B, Damle NK. Preclinical anti-tumor activity of antibody-targeted chemotherapy with CMC-544 (inotuzumab ozogamicin), a CD22-specific immunoconjugate of calicheamicin, compared with non-targeted combination chemotherapy with CVP or CHOP. Cancer Chemother Pharmacol. 2011;67(4):741–9.PubMedGoogle Scholar
  41. 41.
    DiJoseph JF, Dougher MM, Kalyandrug LB, Armellino DC, Boghaert ER, Hamann PR, et al. Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin Cancer Res. 2006;12(1):242–9.PubMedGoogle Scholar
  42. 42.
    DiJoseph JF, Dougher MM, Armellino DC, Evans DY, Damle NK. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia. 2007;21(11):2240–5.PubMedGoogle Scholar
  43. 43.
    Kantarjian HM, DeAngelo DJ, Advani AS, Stelljes M, Kebriaei P, Cassaday RD, et al. Hepatic adverse event profile of inotuzumab ozogamicin in adult patients with relapsed or refractory acute lymphoblastic leukaemia: results from the open-label, randomised, phase 3 INO-VATE study. Lancet Haematol. 2017;4(8):e387–98.PubMedGoogle Scholar
  44. 44.
    Advani RH, Lebovic D, Chen A, Brunvand M, Goy A, Chang JE, et al. Phase I study of the anti-CD22 antibody–drug conjugate pinatuzumab vedotin with/without rituximab in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2017;23(5):1167–76.PubMedGoogle Scholar
  45. 45.
    Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res. 2011;17(20):6398–405.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Mansfield E, Amlot P, Pastan I, FitzGerald DJ. Recombinant RFB4 immunotoxins exhibit potent cytotoxic activity for CD22-bearing cells and tumors. Blood. 1997;90(5):2020–6.PubMedGoogle Scholar
  47. 47.
    Brinkmann U, Reiter Y, Jung SH, Lee B, Pastan I. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc Natl Acad Sci U S A. 1993;90(16):7538–42.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Salvatore G, Beers R, Margulies I, Kreitman RJ, Pastan I. Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin Cancer Res. 2002;8(4):995–1002.PubMedGoogle Scholar
  49. 49.
    Mussai F, Campana D, Bhojwani D, Stetler-Stevenson M, Steinberg SM, Wayne AS, et al. Cytotoxicity of the anti-CD22 immunotoxin HA22 (CAT-8015) against paediatric acute lymphoblastic leukaemia. Br J Haematol. 2010;150(3):352–8.PubMedGoogle Scholar
  50. 50.
    Kinjyo I, Matlawska-Wasowska K, Chen X, Monks NR, Burke P, Winter SS, et al. Characterization of the anti-CD22 targeted therapy, moxetumomab pasudotox, for B-cell precursor acute lymphoblastic leukemia. Pediatr Blood Cancer. 2017;64(11):e26604.Google Scholar
  51. 51.
    Short NJ, Kantarjian H, Jabbour E, Cortes JE, Thomas DA, Rytting ME, et al. A phase I study of moxetumomab pasudotox in adults with relapsed or refractory B-cell acute lymphoblastic leukaemia. Br J Haematol. 2017.Google Scholar
  52. 52.
    Wayne AS, Shah NN, Bhojwani D, Silverman LB, Whitlock JA, Stetler-Stevenson M, et al. Phase 1 study of the anti-CD22 immunotoxin moxetumomab pasudotox for childhood acute lymphoblastic leukemia. Blood. 2017;130(14):1620–7.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M, et al. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol. 2012;30(15):1822–8.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kreitman RJ, Arons E, Tallman MS, Tadeusz R, Coutre S, Wilson WH, et al. High response rate of moxetumomab pasudotox in relapsed/refractory hairy cell leukemia includes eradication of minimal residual disease: potential importance for outcome. Blood. 2015;126:4161.Google Scholar
  55. 55.
    Kreitman RJ, Squires DR, Stetler-Stevenson M, Noel P, FitzGerald DJP, Wilson WH, et al. Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol. 2005;23(27):6719–29.PubMedGoogle Scholar
  56. 56.
    Weldon JE, Xiang L, Chertov O, Margulies I, Kreitman RJ, FitzGerald DJ, et al. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood. 2009;113(16):3792–800.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Müller F, Stookey S, Cunningham T, Pastan I. Paclitaxel synergizes with exposure time adjusted CD22-targeting immunotoxins against B-cell malignancies. Oncotarget. 2017;8(19):30644–55.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Sheibani K, Winberg CD, van de Velde S, Blayney DW, Rappaport H. Distribution of lymphocytes with interleukin-2 receptors (TAC antigens) in reactive lymphoproliferative processes, Hodgkin’s disease, and non-Hodgkin’s lymphomas. An immunohistologic study of 300 cases. Am J Pathol. 1987;127(1):27–37.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Dasanu CA. Newer developments in adult T-cell leukemia/lymphoma therapeutics. Expert Opin Pharmacother. 2011;12(11):1709–17.PubMedGoogle Scholar
  60. 60.
    Shao H, Calvo KR, Grönborg M, Tembhare PR, Kreitman RJ, Stetler-Stevenson M, et al. Distinguishing hairy cell leukemia variant from hairy cell leukemia: development and validation of diagnostic criteria. Leuk Res. 2013;37(4):401–9.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Ambrosetti A, Nadali G, Vinante F, Carlini S, Veneri D, Todeschini G, et al. Serum levels of soluble interleukin-2 receptor in Hodgkin disease. Relationship with clinical stage, tumor burden, and treatment outcome. Cancer. 1993;72(1):201–6.PubMedGoogle Scholar
  62. 62.
    Yoshizato T, Nannya Y, Imai Y, Ichikawa M, Kurokawa M. Clinical significance of serum-soluble interleukin-2 receptor in patients with follicular lymphoma. Clin Lymphoma Myeloma Leuk. 2013;13(4):410–6.PubMedGoogle Scholar
  63. 63.
    Janik JE, Morris JC, O’Mahony D, Pittaluga S, Jaffe ES, Redon CE, et al. 90Y-daclizumab, an anti-CD25 monoclonal antibody, provided responses in 50% of patients with relapsed Hodgkin’s lymphoma. Proc Natl Acad Sci U S A. 2015;112(42):13045–50.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Kreitman RJ, Stetler-Stevenson M, Jaffe ES, Conlon KC, Steinberg SM, Wilson W, et al. Complete remissions of adult T-cell leukemia with anti-CD25 recombinant immunotoxin LMB-2 and chemotherapy to block immunogenicity. Clin Cancer Res. 2016;22(2):310–8.PubMedGoogle Scholar
  65. 65.
    Pepper CJ, Hambly RM, Fegan CD, Delavault P, Thurston DE. The novel sequence-specific DNA cross-linking agent SJG-136 (NSC 694501) has potent and selective in vitro cytotoxicity in human B-cell chronic lymphocytic leukemia cells with evidence of a p53-independent mechanism of cell kill. Cancer Res. 2004;64(18):6750–5.PubMedGoogle Scholar
  66. 66.
    Puzanov I, Lee W, Chen AP, Calcutt MW, Hachey DL, Vermeulen WL, et al. Phase I pharmacokinetic and pharmacodynamic study of SJG-136, a novel DNA sequence selective minor groove cross-linking agent, in advanced solid tumors. Clin Cancer Res. 2011;17(11):3794–802.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Flynn MJ, Zammarchi F, Tyrer PC, Akarca AU, Janghra N, Britten CE, et al. ADCT-301, a pyrrolobenzodiazepine (PBD) dimer-containing antibody–drug conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol Cancer Ther. 2016;15(11):2709–21.PubMedGoogle Scholar
  68. 68.
    Liu Y, Sattarzadeh A, Diepstra A, Visser L, van den Berg A. The microenvironment in classical Hodgkin lymphoma: an actively shaped and essential tumor component. Semin Cancer Biol. 2014;24:15–22.PubMedGoogle Scholar
  69. 69.
    Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–21.PubMedGoogle Scholar
  70. 70.
    Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Moskowitz CH, Nademanee A, Masszi T, Agura E, Holowiecki J, Abidi MH, et al. AETHERA Study Group. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980):1853–62.PubMedGoogle Scholar
  72. 72.
    Moskowitz AJ, Schöder H, Yahalom J, McCall SJ, Fox SY, Gerecitano J, et al. PET-adapted sequential salvage therapy with brentuximab vedotin followed by augmented ifosamide, carboplatin, and etoposide for patients with relapsed and refractory Hodgkin’s lymphoma: a non-randomised, open-label, single-centre, phase 2 study. Lancet Oncol. 2015;16(3):284–92.PubMedGoogle Scholar
  73. 73.
    Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–6.PubMedGoogle Scholar
  74. 74.
    Prince HM, Kim YH, Horwitz SM, Dummer R, Scarisbrick J, Quaglino P, et al. ALCANZA study group. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet. 2017;390(10094):555–66.PubMedGoogle Scholar
  75. 75.
    Fanale MA, Horwitz SM, Forero-Torres A, Bartlett NL, Advani RH, Pro B, et al. Brentuximab vedotin in the front-line treatment of patients with CD30+ peripheral T-cell lymphomas: results of a phase I study. J Clin Oncol. 2014;32(28):3137–43.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Rossi C, Casasnovas R-O. New therapy outlooks in Hodgkin lymphoma. Bull Cancer. 2017;104(2):182–94.PubMedGoogle Scholar
  77. 77.
    van Spriel AB. Tetraspanins in the humoral immune response. Biochem Soc Trans 2011;39(2):512–7.PubMedGoogle Scholar
  78. 78.
    van Spriel AB, de Keijzer S, van der Schaaf A, Gartlan KH, Sofi M, Light A, et al. The tetraspanin CD37 orchestrates the α(4)β(1) integrin–Akt signaling axis and supports long-lived plasma cell survival. Sci Signal. 2012;5(250):ra82.PubMedGoogle Scholar
  79. 79.
    Barrena S, Almeida J, Yunta M, López A, Fernández-Mosteirín N, Giralt M, et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia. 2005;19(8):1376–83.PubMedGoogle Scholar
  80. 80.
    Beckwith KA, Byrd JC, Muthusamy N. Tetraspanins as therapeutic targets in hematological malignancy: a concise review. Front Physiol. 2015;6:91.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Zhao X, Lapalombella R, Joshi T, Cheney C, Gowda A, Hayden-Ledbetter MS, et al. Targeting CD37-positive lymphoid malignancies with a novel engineered small modular immunopharmaceutical. Blood. 2007;110(7):2569–77.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Heider K-H, Kiefer K, Zenz T, Volden M, Stilgenbauer S, Ostermann E, et al. A novel Fc-engineered monoclonal antibody to CD37 with enhanced ADCC and high proapoptotic activity for treatment of B-cell malignancies. Blood. 2011;118(15):4159–68.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Deckert J, Park PU, Chicklas S, Yi Y, Li M, Lai KC, et al. A novel anti-CD37 antibody-drug conjugate with multiple anti-tumor mechanisms for the treatment of B-cell malignancies. Blood. 2013;122(20):3500–10.PubMedGoogle Scholar
  84. 84.
    Beckwith KA, Frissora FW, Stefanovski MR, Towns WH, Cheney C, Mo X, et al. The CD37-targeted antibody–drug conjugate IMGN529 is highly active against human CLL and in a novel CD37 transgenic murine leukemia model. Leukemia. 2014;28(7):1501–10.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Hicks SW, Lai KC, Gavrilescu LC, Yi Y, Sikka S, Shah P, et al. The antitumor activity of IMGN529, a CD37-targeting antibody-drug conjugate, is potentiated by rituximab in non-Hodgkin lymphoma models. Neoplasia. 2017;19(9):661–71.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Stathis A, Freedman AS, Flinn IW, Maddocks KJ, Weitman S, Berdeja JG, et al. A phase I study of IMGN529, an antibody-drug conjugate (ADC) targeting CD37, in adult patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma (NHL). Blood. 2014;124(21):1760.Google Scholar
  87. 87.
    Pereira DS, Guevara CI, Jin L, Mbong N, Verlinsky A, Hsu SJ, et al. AGS67E, an anti-CD37 monomethyl auristatin E antibody–drug conjugate as a potential therapeutic for B/T-cell malignancies and AML: a new role for CD37 in AML. Mol Cancer Ther. 2015;14(7):1650–60.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Berdeja JG. Lorvotuzumab mertansine: antibody-drug-conjugate for CD56+ multiple myeloma. Front Biosci. 2014;19:163–70.Google Scholar
  89. 89.
    Tassone P, Gozzini A, Goldmacher V, Shammas MA, Whiteman KR, Carrasco DR, et al. In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res. 2004;64(13):4629–36.PubMedGoogle Scholar
  90. 90.
    Ely SA, Knowles DM. Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gammopathy of undetermined significance and lymphomas with plasmacytoid differentiation. Am J Pathol. 2002;160(4):1293–9.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Lutz RJ, Whiteman KR. Antibody-maytansinoid conjugates for the treatment of myeloma. MAbs. 2009;1(6):548–51.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Bowman MR, Crimmins MA, Yetz-Aldape J, Kriz R, Kelleher K, Herrmann S. The cloning of CD70 and its identification as the ligand for CD27. J Immunol. 1994;152(4):1756–61.PubMedGoogle Scholar
  93. 93.
    Borst J, Hendriks J, Xiao Y. CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol. 2005;17(3):275–81.PubMedGoogle Scholar
  94. 94.
    Jacquot S. CD27/CD70 interactions regulate T dependent B cell differentiation. Immunol Res. 2000;21(1):23–30.PubMedGoogle Scholar
  95. 95.
    Lens SMA, Drillenburg P, Den Drijver BFA, Van Schijndel G, Pals ST, Van Lier RAW, et al. Aberrant expression and reverse signalling of CD70 on malignant B cells. Br J Haematol. 1999;106(2):491–503.PubMedGoogle Scholar
  96. 96.
    Oflazoglu E, Stone IJ, Gordon K, Wood CG, Repasky EA, Grewal IS, et al. Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin Cancer Res. 2008;14(19):6171–80.PubMedGoogle Scholar
  97. 97.
    Tannir NM, Forero-Torres A, Ramchandren R, Pal SK, Ansell SM, Infante JR, et al. Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma. Invest New Drugs. 2014;32(6):1246–57.PubMedGoogle Scholar
  98. 98.
    Owonikoko TK, Hussain A, Stadler WM, Smith DC, Kluger H, Molina AM, et al. First-in-human multicenter phase I study of BMS-936561 (MDX-1203), an antibody-drug conjugate targeting CD70. Cancer Chemother Pharmacol. 2016;77(1):155–62.PubMedGoogle Scholar
  99. 99.
    Claesson L, Larhammar D, Rask L, Peterson PA. cDNA clone for the human invariant gamma chain of class II histocompatibility antigens and its implications for the protein structure. Proc Natl Acad Sci U S A. 1983;80(24):7395–9.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Matza D, Wolstein O, Dikstein R, Shachar I. Invariant chain induces B cell maturation by activating a TAF(II)105-NF-kappaB-dependent transcription program. J Biol Chem. 2001;276(29):27203–6.PubMedGoogle Scholar
  101. 101.
    Starlets D, Gore Y, Binsky I, Haran M, Harpaz N, Shvidel L, et al. Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood. 2006;107(12):4807–16.PubMedGoogle Scholar
  102. 102.
    Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, et al. MIF signal transduction initiated by binding to CD74. J Exp Med. 2003;197(11):1467–76.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Möller P, Henne C, Moldenhauer G. CD74 workshop panel report. Leukocyte typing V: white cell differentiation antigens. Oxford: Oxford University Press; 1995:568–71.Google Scholar
  104. 104.
    Burton JD, Ely S, Reddy PK, Stein R, Gold DV, Cardillo TM, et al. CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res. 2004;10(19):6606–11.PubMedGoogle Scholar
  105. 105.
    Stein R, Qu Z, Cardillo TM, Chen S, Rosario A, Horak ID, et al. Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood. 2004;104(12):3705–11.PubMedGoogle Scholar
  106. 106.
    Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Iwashige H, Aridome K, et al. Invariant chain expression in gastric cancer. Cancer Lett. 2001;168(1):87–91.PubMedGoogle Scholar
  107. 107.
    Ioachim HL, Pambuccian SE, Hekimgil M, Giancotti FR, Dorsett BH. Lymphoid monoclonal antibodies reactive with lung tumors: diagnostic application. Am J Surg Pathol. 1996;20(1):64–71.PubMedGoogle Scholar
  108. 108.
    Berkova Z, Wang S, Ao X, Wise JF, Braun FK, Rezaeian AH, et al. CD74 interferes with the expression of fas receptor on the surface of lymphoma cells. J Exp Clin Cancer Res. 2014;33:80.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Hansen HJ, Ong GL, Diril H, Valdez A, Roche PA, Griffiths GL, et al. Internalization and catabolism of radiolabelled antibodies to the MHC class-II invariant chain by B-cell lymphomas. Biochem J. 1996;320(Pt 1):293–300.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Pawlak-Byczkowska EJ, Hansen HJ, Dion AS, Goldenberg DM. Two new monoclonal antibodies, EPB-1 and EPB-2, reactive with human lymphoma. Cancer Res. 1989;49(16):4568–77.PubMedGoogle Scholar
  111. 111.
    Govindan SV, Cardillo TM, Sharkey RM, Tat F, Gold DV, Goldenberg DM. Milatuzumab–SN-38 conjugates for the treatment of CD74+ cancers. Mol Cancer Ther. 2013;12(6):968–978.PubMedGoogle Scholar
  112. 112.
    Mark T, Martin P, Leonard JP, Niesvizky R. Milatuzumab: a promising new agent for the treatment of lymphoid malignancies. Expert Opin Investig Drugs. 2009;18(1):99–104.PubMedGoogle Scholar
  113. 113.
    Sapra P, Stein R, Pickett J, Qu Z, Govindan SV, Cardillo TM, et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res. 2005;11(14):5257–64.PubMedGoogle Scholar
  114. 114.
    Kaufman JL, Niesvizky R, Stadtmauer EA, Chanan-Khan A, Siegel D, Horne H, et al. Phase I, multicentre, dose-escalation trial of monotherapy with milatuzumab (humanized anti-CD74 monoclonal antibody) in relapsed or refractory multiple myeloma. Br J Haematol. 2013;163(4):478–86.PubMedGoogle Scholar
  115. 115.
    Cabezudo E, Carrara P, Morilla R, Matutes E. Quantitative analysis of CD79b, CD5 and CD19 in mature B-cell lymphoproliferative disorders. Haematologica. 1999;84(5):413–8.PubMedGoogle Scholar
  116. 116.
    Polson AG, Yu S-F, Elkins K, Zheng B, Clark S, Ingle GS, et al. Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood. 2007;110(2):616–23.PubMedGoogle Scholar
  117. 117.
    Fuh FK, Looney C, Li D, Poon KA, Dere RC, Danilenko DM, et al. Anti-CD22 and anti-CD79b antibody-drug conjugates preferentially target proliferating B cells. Br J Pharmacol. 2017;174(8):628–40.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Zheng B, Fuji RN, Elkins K, Yu S-F, Fuh FK, Chuh J, et al. In vivo effects of targeting CD79b with antibodies and antibody-drug conjugates. Mol Cancer Ther. 2009;8(10):2937–46.PubMedGoogle Scholar
  119. 119.
    Dornan D, Bennett F, Chen Y, Dennis M, Eaton D, Elkins K, et al. Therapeutic potential of an anti-CD79b antibody–drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood. 2009;114(13):2721–9.PubMedGoogle Scholar
  120. 120.
    Palanca-Wessels MCA, Czuczman M, Salles G, Assouline S, Sehn LH, Flinn I, et al. Safety and activity of the anti-CD79B antibody–drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015;16(6):704–15.PubMedGoogle Scholar
  121. 121.
    Pfeifer M, Zheng B, Erdmann T, Koeppen H, McCord R, Grau M, et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes. Leukemia. 2015;29(7):1578–86.PubMedGoogle Scholar
  122. 122.
    Sanderson RD, Lalor P, Bernfield M. B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul. 1989;1(1):27–35.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Tassone P, Goldmacher VS, Neri P, Gozzini A, Shammas MA, Whiteman KR, et al. Cytotoxic activity of the maytansinoid immunoconjugate B-B4–DM1 against CD138+ multiple myeloma cells. Blood. 2004;104(12):3688–96.PubMedGoogle Scholar
  124. 124.
    Ikeda H, Hideshima T, Fulciniti M, Lutz RJ, Yasui H, Okawa Y, et al. The monoclonal antibody nBT062 conjugated to cytotoxic maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin Cancer Res. 2009;15(12):4028–37.PubMedGoogle Scholar
  125. 125.
    Bossen C, Schneider P. BAFF, APRIL and their receptors: structure, function and signaling. Semin Immunol. 2006;18(5):263–75.PubMedGoogle Scholar
  126. 126.
    Lee L, Bounds D, Paterson J, Herledan G, Sully K, Seestaller-Wehr LM, et al. Evaluation of B cell maturation antigen as a target for antibody drug conjugate mediated cytotoxicity in multiple myeloma. Br J Haematol. 2016;174(6):911–22.PubMedGoogle Scholar
  127. 127.
    Belnoue E, Tougne C, Rochat A-F, Lambert P-H, Pinschewer DD, Siegrist C-A. Homing and adhesion patterns determine the cellular composition of the bone marrow plasma cell niche. J Immunol. 2012;188(3):1283–91.PubMedGoogle Scholar
  128. 128.
    Alley SC, Okeley NM, Senter PD. Antibody–drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol. 2010;14(4):529–37.PubMedGoogle Scholar
  129. 129.
    Tai Y-T, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnetta A, et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood. 2014;123(20):3128–38.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Tai Y-T, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy. 2015;7(11):1187–99.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Cohen AD, Popat R, Trudel S, Richardson PG, Libby EN III, Lendvai N, et al. First in human study with GSK2857916, an antibody drug Conjugated to microtubule-disrupting agent directed against B-cell maturation antigen (BCMA) in patients with relapsed/refractory multiple myeloma (MM): results from study BMA117159 part 1 dose escalation. Blood. 2016;128:1148.Google Scholar
  132. 132.
    Jilani I, Estey E, Huh Y, Joe Y, Manshouri T, Yared M, et al. Differences in CD33 intensity between various myeloid neoplasms. Am J Clin Pathol. 2002;118(4):560–6.PubMedGoogle Scholar
  133. 133.
    Godwin CD, Gale RP, Walter RB. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia. 2017;31(9):1855–68.PubMedGoogle Scholar
  134. 134.
    Hamann PR, Hinman LM, Beyer CF, Lindh D, Upeslacis J, Flowers DA, et al. An anti–CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug Chem. 2002;13(1):40–6.Google Scholar
  135. 135.
    Amadori S, Suciu S, Selleslag D, Aversa F, Gaidano G, Musso M, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–9.PubMedGoogle Scholar
  136. 136.
    Burnett AK, Hills RK, Hunter AE, Milligan D, Kell WJ, Wheatley K, et al; UK National Cancer Research Institute AML Working Group. The addition of gemtuzumab ozogamicin to low-dose Ara-C improves remission rate but does not significantly prolong survival in older patients with acute myeloid leukaemia: results from the LRF AML14 and NCRI AML16 pick-a-winner comparison. Leukemia. 2013;27(1):75–81.PubMedGoogle Scholar
  137. 137.
    Castaigne S, Pautas C, Terré C, Raffoux E, Bordessoule D, Bastie J-N, et al; Acute Leukemia French Association. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508–16.PubMedGoogle Scholar
  138. 138.
    Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S, Othus M, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15(9):986–96.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.PubMedGoogle Scholar
  140. 140.
    Petersdorf SH, Kopecky KJ, Slovak M, Willman C, Nevill T, Brandwein J, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Taksin A-L, Legrand O, Raffoux E, de Revel T, Thomas X, Contentin N, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21(1):66–71.PubMedGoogle Scholar
  142. 142.
    Sutherland MSK, Walter RB, Jeffrey SC, Burke PJ, Yu C, Kostner H, et al. SGN-CD33A: a novel CD33-targeting antibody–drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122(8):1455–63.Google Scholar
  143. 143.
    Garfin PM, Feldman EJ. Antibody-based treatment of acute myeloid leukemia. Curr Hematol Malig Rep. 2016;11(6):545–52.PubMedGoogle Scholar
  144. 144.
    Stein AS, Walter RB, Erba HP, Fathi AT, Advani AS, Lancet JE, et al. A phase 1 trial of SGN-CD33A as monotherapy in patients with CD33-positive acute myeloid leukemia (AML). Blood. 2015;126(23):324.Google Scholar
  145. 145.
    Fathi AT, Erba HP, Lancet JE, Stein EM, Walter RB, DeAngelo DJ, et al. SGN-CD33A plus hypomethylating agents: a novel, well-tolerated regimen with high remission rate in frontline unfit AML. Blood. 2015;126(23):454.Google Scholar
  146. 146.
    Buckley SA, Walter RB. Update on antigen-specific immunotherapy of acute myeloid leukemia. Curr Hematol Malig Rep. 2015;10(2):65–75.PubMedGoogle Scholar
  147. 147.
    Whiteman KR, Noordhuis P, Walker R, Watkins K, Kovtun Y, Harvey L, et al. The antibody-drug conjugate (ADC) IMGN779 is highly active in vitro and in vivo against acute myeloid leukemia (AML) with FLT3-ITD mutations. Blood. 2014;124(21):2321.Google Scholar
  148. 148.
    Issell BF, Crooke ST. Maytansine. Cancer Treat Rev. 1978;5(4):199–207.PubMedGoogle Scholar
  149. 149.
    Lapusan S, Vidriales MB, Thomas X, de Botton S, Vekhoff A, Tang R, et al. Phase I studies of AVE9633, an anti-CD33 antibody-maytansinoid conjugate, in adult patients with relapsed/refractory acute myeloid leukemia. Invest New Drugs. 2012;30(3):1121–31.Google Scholar
  150. 150.
    Schwartz-Albiez R, Dörken B, Hofmann W, Moldenhauer G. The B cell-associated CD37 antigen (gp40-52). Structure and subcellular expression of an extensively glycosylated glycoprotein. J Immunol. 1988;140(3):905–14.PubMedGoogle Scholar
  151. 151.
    Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14(10):1777–84.PubMedGoogle Scholar
  152. 152.
    Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98(8):2301–7.PubMedGoogle Scholar
  153. 153.
    Xie LH, Biondo M, Busfield SJ, Arruda A, Yang X, Vairo G, et al. CD123 target validation and preclinical evaluation of ADCC activity of anti-CD123 antibody CSL362 in combination with NKs from AML patients in remission. Blood Cancer J. 2017;7(6):e567.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Rollins-Raval M, Pillai R, Warita K, Mitsuhashi-Warita T, Mehta R, Boyiadzis M, et al. CD123 immunohistochemical expression in acute myeloid leukemia is associated with underlying FLT3-ITD and NPM1 mutations. Appl Immunohistochem Mol Morphol. 2013;21(3):212–7.PubMedGoogle Scholar
  155. 155.
    Testa U, Riccioni R, Militi S, Coccia E, Stellacci E, Samoggia P, et al. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood. 2002;100(8):2980–8.PubMedGoogle Scholar
  156. 156.
    Wolska-Washer A, Robak P, Smolewski P, Robak T. Emerging antibody-drug conjugates for treating lymphoid malignancies. Expert Opin Emerg Drugs. 2017;22(3):259–73.PubMedGoogle Scholar
  157. 157.
    Gerber H-P. Emerging immunotherapies targeting CD30 in Hodgkin’s lymphoma. Biochem Pharmacol. 2010;79(11):1544–52.PubMedGoogle Scholar
  158. 158.
    Gerber H-P, Koehn FE, Abraham RT. The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat Prod Rep. 2013;30(5):625–39.PubMedGoogle Scholar
  159. 159.
    Agarwal P, Bertozzi CR. Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem. 2015;26(2):176–92.PubMedGoogle Scholar
  160. 160.
    Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A, et al. Brentuximab vedotin plus doxorubicin, vinblastine, dacarbazine (A+AVD) as frontline therapy demonstrates superior modified progression-free survival versus ABVD in patients with previously untreated stage III or IV Hodgkin lymphoma (HL): the phase 3 Echelon-1 study. Blood. 2017;130(Suppl 1):6.Google Scholar
  161. 161.
    Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Engert A, Fanale M, Santoro A, Armand P, Ansell S, Zinzani PL, et al. Checkmate 205 trial. EHA Meeting. 2017;abstract S412.Google Scholar
  163. 163.
    Borchmann S, von Tresckow B. Novel agents in classical Hodgkin lymphoma. Leuk Lymphoma. 2017;58(10):2275–86.PubMedGoogle Scholar
  164. 164.
    Loganzo F, Sung M, Gerber H-P. Mechanisms of resistance to antibody–drug conjugates. Mol Cancer Ther. 2016;15(12):2825–34.PubMedGoogle Scholar
  165. 165.
    Epenetos AA, Snook D, Durbin H, Johnson PM, Taylor-Papadimitriou J. Limitations of radiolabeled monoclonal antibodies for localization of human neoplasms. Cancer Res. 1986;46(6):3183–91.PubMedGoogle Scholar
  166. 166.
    Merten H, Brandl F, Plückthun A, Zangemeister-Wittke U. Antibody–drug conjugates for tumor targeting-novel conjugation chemistries and the promise of non-IgG binding proteins. Bioconjug Chem. 2015;26(11):2176–85.PubMedGoogle Scholar
  167. 167.
    Gébleux R, Wulhfard S, Casi G, Neri D. Antibody format and drug release rate determine the therapeutic activity of noninternalizing antibody–drug conjugates. Mol Cancer Ther. 2015;14(11):2606–12.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Szabo SM, Hirji I, Johnston KM, Juarez-Garcia A, Connors JM. Treatment patterns and costs of care for patients with relapsed and refractory Hodgkin lymphoma treated with brentuximab vedotin in the United States: a retrospective cohort study. PLoS One. 2017;12(10):e0180261.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Hui L, von Keudell G, Wang R, Zeidan AM, Gore SD, Ma X, et al. Cost-effectiveness analysis of consolidation with brentuximab vedotin for high-risk Hodgkin lymphoma after autologous stem cell transplantation. Cancer. 2017;123(19):3763–71.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre de Recherches en Cancérologie de Toulouse (CRCT)UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de ToulouseToulouseFrance
  2. 2.Hématologie CliniqueHôpital Le Bocage—CHU DijonDijon CedexFrance
  3. 3.Faculté des Sciences de SantéINSERM UMR1231DijonFrance

Personalised recommendations