Advertisement

Targeted Oncology

, Volume 12, Issue 6, pp 719–739 | Cite as

Antibody–Drug Conjugates for the Treatment of Solid Tumors: Clinical Experience and Latest Developments

  • Aiko Nagayama
  • Leif W. Ellisen
  • Bruce Chabner
  • Aditya Bardia
Review Article

Abstract

Antibody–drug conjugates (ADCs) are complex immunoconjugates designed to selectively deliver toxic small molecules preferentially to cancer cells. These immunoconjugates consist of a monoclonal antibody - directed to a tumor antigen - and a cytotoxic agent that is conjugated to the antibody via a molecular linker. Following the binding to a specific antigen on the surface of cancer cells, the conjugate is internalized and releases its cytotoxic payload to kill the malignant cell. ADCs that have gained regulatory approval from the US Food and Drug Administration (FDA) include brentuximab vedotin for CD30-positive Hodgkin’s lymphoma and trastuzumab emtansine for human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Several other agents are in advanced stages of clinical development, including sacituzumab govitecan for breast cancer, mirvetuximab soravtansine for ovarian cancer, rovalpituzumab tesirine for lung cancer, depatuxizumab mafodotin for glioblastoma, and oportuzumab monatox for bladder cancer. This review provides an overview of the recent clinical experience with the approved, most advanced, and other promising candidates of ADCs for solid tumors, including a description of biology and chemistry of ADCs, drug resistance and biomarkers, and the future perspective on combination strategies with these new immunoconjugates.

Notes

Compliance with Ethical Standards

Funding

A. Bardia was supported by the US National Institutes of Health (NIH) (K12CA087723–14).

Conflict of Interest

Aiko Nagayama owns stock options in Chugai, Inc., and a family member has a leadership position with Chugai, Inc. and Roche, Inc. Bruce Chabner owns stocks in Seattle Genetics. Aditya Bardia has received consulting fees or honorarium by Genentech, Pfizer, and Novartis. Leif Ellisen declares no conflict of interest.

References

  1. 1.
    Goodman LS, Wintrobe MM, et al. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Assoc. 1946;132:126–32.Google Scholar
  2. 2.
    Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238(23):787–93.  https://doi.org/10.1056/NEJM194806032382301. PubMedCrossRefGoogle Scholar
  3. 3.
    Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 2015;15(6):361–70.  https://doi.org/10.1038/nrc3930.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Schwartz RS. Paul Ehrlich's magic bullets. N Engl J Med. 2004;350(11):1079–80.  https://doi.org/10.1056/NEJMp048021. PubMedCrossRefGoogle Scholar
  6. 6.
    Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014;6(1):34–45.  https://doi.org/10.4161/mabs.27022.PubMedCrossRefGoogle Scholar
  7. 7.
    Sievers EL, Larson RA, Stadtmauer EA, Estey E, Lowenberg B, Dombret H, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19(13):3244–54.  https://doi.org/10.1200/JCO.2001.19.13.3244. PubMedCrossRefGoogle Scholar
  8. 8.
    Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.PubMedGoogle Scholar
  9. 9.
    Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–6.  https://doi.org/10.1200/JCO.2011.38.0402.PubMedCrossRefGoogle Scholar
  10. 10.
    Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J Clin Oncol. 2012;30(18):2183–9.  https://doi.org/10.1200/JCO.2011.38.0410. PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.  https://doi.org/10.1056/NEJMoa1209124. PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer. 2006;6(9):714–27.  https://doi.org/10.1038/nrc1913.PubMedCrossRefGoogle Scholar
  13. 13.
    Patil R, Portilla-Arias J, Ding H, Konda B, Rekechenetskiy A, Inoue S, et al. Cellular delivery of doxorubicin via pH-controlled hydrazone linkage using multifunctional nano vehicle based on poly(beta-l-malic acid). Int J Mol Sci. 2012;13(9):11681–93.  https://doi.org/10.3390/ijms130911681.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jain N, Smith SW, Ghone S, Tomczuk B. Current ADC linker chemistry. Pharm Res. 2015;32(11):3526–40.  https://doi.org/10.1007/s11095-015-1657-7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Polson AG, Calemine-Fenaux J, Chan P, Chang W, Christensen E, Clark S, et al. Antibody-drug conjugates for the treatment of non-Hodgkin's lymphoma: target and linker-drug selection. Cancer Res. 2009;69(6):2358–64.  https://doi.org/10.1158/0008-5472.CAN-08-2250.PubMedCrossRefGoogle Scholar
  16. 16.
    Smith AL, Nicolaou KC. The enediyne antibiotics. J Med Chem. 1996;39(11):2103–17.  https://doi.org/10.1021/jm9600398.PubMedCrossRefGoogle Scholar
  17. 17.
    David M, Goldenberg TMC, Serengulam V, Rossi EA, Sharkey RM. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget. 2015;6(26):22496–512.Google Scholar
  18. 18.
    Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006;6(10):789–802.  https://doi.org/10.1038/nrc1977.PubMedCrossRefGoogle Scholar
  19. 19.
    Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003;102(4):1458–65.  https://doi.org/10.1182/blood-2003-01-0039.PubMedCrossRefGoogle Scholar
  20. 20.
    Li F, Emmerton KK, Jonas M, Zhang X, Miyamoto JB, Setter JR, et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res. 2016;76(9):2710–9.  https://doi.org/10.1158/0008-5472.CAN-15-1795.PubMedCrossRefGoogle Scholar
  21. 21.
    Hinrichs MJ, Dixit R. Antibody drug conjugates: nonclinical safety considerations. AAPS J. 2015;17(5):1055–64.  https://doi.org/10.1208/s12248-015-9790-0.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Donaghy H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs. 2016;8(4):659–71.  https://doi.org/10.1080/19420862.2016.1156829.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35(4):e00225–e.  https://doi.org/10.1042/bsr20150089.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Tolcher AW, Sugarman S, Gelmon KA, Cohen R, Saleh M, Isaacs C, et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol. 1999;17(2):478–84.  https://doi.org/10.1200/JCO.1999.17.2.478. PubMedCrossRefGoogle Scholar
  25. 25.
    Gorovits B, Krinos-Fiorotti C. Proposed mechanism of off-target toxicity for antibody-drug conjugates driven by mannose receptor uptake. Cancer Immunol Immunother. 2013;62(2):217–23.  https://doi.org/10.1007/s00262-012-1369-3. PubMedCrossRefGoogle Scholar
  26. 26.
    Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59(8):748–58.  https://doi.org/10.1016/j.addr.2007.06.008.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Senter PD. Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol. 2009;13(3):235–44.  https://doi.org/10.1016/j.cbpa.2009.03.023.PubMedCrossRefGoogle Scholar
  28. 28.
    Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25.  https://doi.org/10.1038/nri2155.PubMedCrossRefGoogle Scholar
  29. 29.
    Vu T, Claret FX. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol. 2012;2:62.  https://doi.org/10.3389/fonc.2012.00062.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47(2):115–23.  https://doi.org/10.1053/j.seminhematol.2010.01.011.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009;9(7):463–75.  https://doi.org/10.1038/nrc2656.PubMedCrossRefGoogle Scholar
  32. 32.
    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.  https://doi.org/10.1038/35052073. PubMedCrossRefGoogle Scholar
  33. 33.
    Weinberg RA. Twisted epithelial-mesenchymal transition blocks senescence. Nat Cell Biol. 2008;10(9):1021–3.  https://doi.org/10.1038/ncb0908-1021.PubMedCrossRefGoogle Scholar
  34. 34.
    Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001;61(12):4744–9.PubMedGoogle Scholar
  35. 35.
    Spector NL, Blackwell KL. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol. 2009;27(34):5838–47.  https://doi.org/10.1200/JCO.2009.22.1507.PubMedCrossRefGoogle Scholar
  36. 36.
    Bardia A, Baselga J. Targeted Therapies in Breast Cancer. In: Sledge G, Baselga J, editors. Targeted therapies in breast cancer (therapeutic strategies). 1st ed. Oxford: Clinical Publishing; 2013. p. 43–50.Google Scholar
  37. 37.
    Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10(5):317–27.  https://doi.org/10.1038/nri2744.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50.  https://doi.org/10.1038/cr.2009.139.PubMedCrossRefGoogle Scholar
  39. 39.
    Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9(10):729–40.  https://doi.org/10.1038/nri2620. PubMedCrossRefGoogle Scholar
  40. 40.
    Stoermer KA, Morrison TE. Complement and viral pathogenesis. Virology. 2011;411(2):362–73.  https://doi.org/10.1016/j.virol.2010.12.045.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Falini B, Pileri S, Pizzolo G, Durkop H, Flenghi L, Stirpe F, et al. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood. 1995;85(1):1–14.PubMedGoogle Scholar
  42. 42.
    Al-Shamkhani A. The role of CD30 in the pathogenesis of haematopoietic malignancies. Curr Opin Pharmacol. 2004;4(4):355–9.  https://doi.org/10.1016/j.coph.2004.02.007.PubMedCrossRefGoogle Scholar
  43. 43.
    Matsumoto K, Terakawa M, Miura K, Fukuda S, Nakajima T, Saito H. Extremely rapid and intense induction of apoptosis in human eosinophils by anti-CD30 antibody treatment in vitro. J Immunol. 2004;172(4):2186–93.PubMedCrossRefGoogle Scholar
  44. 44.
    Wahl AF, Klussman K, Thompson JD, Chen JH, Francisco LV, Risdon G, et al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin's disease. Cancer Res. 2002;62(13):3736–42.PubMedGoogle Scholar
  45. 45.
    Forero-Torres A, Leonard JP, Younes A, Rosenblatt JD, Brice P, Bartlett NL, et al. A phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol. 2009;146(2):171–9.  https://doi.org/10.1111/j.1365-2141.2009.07740.x.PubMedCrossRefGoogle Scholar
  46. 46.
    Sutherland MS, Sanderson RJ, Gordon KA, Andreyka J, Cerveny CG, Yu C, et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem. 2006;281(15):10540–7.  https://doi.org/10.1074/jbc.M510026200. PubMedCrossRefGoogle Scholar
  47. 47.
    Okeley NM, Miyamoto JB, Zhang X, Sanderson RJ, Benjamin DR, Sievers EL, et al. Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res. 2010;16(3):888–97.  https://doi.org/10.1158/1078-0432.CCR-09-2069. PubMedCrossRefGoogle Scholar
  48. 48.
    Chen R, Hou J, Newman E, Kim Y, Donohue C, Liu X, et al. CD30 Downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol Cancer Ther. 2015;14(6):1376–84.  https://doi.org/10.1158/1535-7163.MCT-15-0036.
  49. 49.
    Oflazoglu E, Stone IJ, Gordon KA, Grewal IS, van Rooijen N, Law CL, et al. Macrophages contribute to the antitumor activity of the anti-CD30 antibody SGN-30. Blood. 2007;110(13):4370–2.  https://doi.org/10.1182/blood-2007-06-097014.PubMedCrossRefGoogle Scholar
  50. 50.
    Bartlett NL, Niedzwiecki D, Johnson JL, Friedberg JW, Johnson KB, van Besien K, et al. Gemcitabine, vinorelbine, and pegylated liposomal doxorubicin (GVD), a salvage regimen in relapsed Hodgkin's lymphoma: CALGB 59804. Ann Oncol. 2007;18(6):1071–9.  https://doi.org/10.1093/annonc/mdm090. PubMedCrossRefGoogle Scholar
  51. 51.
    Moskowitz CH, Nademanee A, Masszi T, Agura E, Holowiecki J, Abidi MH, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin's lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980):1853–62.  https://doi.org/10.1016/S0140-6736(15)60165-9.PubMedCrossRefGoogle Scholar
  52. 52.
    O'Connor OA. Pro B, Pinter-Brown L, Bartlett N, Popplewell L, Coiffier B et al. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol. 2011;29(9):1182–9.  https://doi.org/10.1200/JCO.2010.29.9024. PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Prince HM, Kim YH, Horwitz SM, Dummer R, Scarisbrick J, Quaglino P, et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet. 2017;390(10094):555–66.  https://doi.org/10.1016/S0140-6736(17)31266-7.
  54. 54.
    Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990;5(7):953–62.PubMedGoogle Scholar
  55. 55.
    Krop I, Winer EP. Trastuzumab emtansine: a novel antibody-drug conjugate for HER2-positive breast cancer. Clin Cancer Res. 2014;20(1):15–20.  https://doi.org/10.1158/1078-0432.CCR-13-0541. PubMedCrossRefGoogle Scholar
  56. 56.
    Oroudjev E, Lopus M, Wilson L, Audette C, Provenzano C, Erickson H, et al. Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol Cancer Ther. 2010;9(10):2700–13.  https://doi.org/10.1158/1535-7163.MCT-10-0645.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280–90.  https://doi.org/10.1158/0008-5472.CAN-08-1776.PubMedCrossRefGoogle Scholar
  58. 58.
    Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat. 2011;128(2):347–56.  https://doi.org/10.1007/s10549-010-1090-x.PubMedCrossRefGoogle Scholar
  59. 59.
    Krop IE, Kim SB, Gonzalez-Martin A, LoRusso PM, Ferrero JM, Smitt M, et al. Trastuzumab emtansine versus treatment of physician's choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(7):689–99.  https://doi.org/10.1016/S1470-2045(14)70178-0.PubMedCrossRefGoogle Scholar
  60. 60.
    Harbeck N, Gluz O, Christgen M, Kates RE, Braun M, Kuemmel S, et al. De-escalation strategies in human epidermal growth factor receptor 2 (HER2)-positive early breast cancer (BC): final analysis of the west German study group adjuvant dynamic marker-adjusted personalized therapy trial optimizing risk assessment and therapy response prediction in early BC HER2- and hormone receptor-positive phase II randomized trial-efficacy, safety, and predictive markers for 12 weeks of Neoadjuvant Trastuzumab Emtansine with or without endocrine therapy (ET) versus Trastuzumab plus ET. J Clin Oncol. 2017;35(26):3046–54.  https://doi.org/10.1200/JCO.2016.71.9815.
  61. 61.
    Phillips GD, Fields CT, Li G, Dowbenko D, Schaefer G, Miller K, et al. Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: critical role for neuregulin blockade in antitumor response to combination therapy. Clin Cancer Res. 2014;20(2):456–68.  https://doi.org/10.1158/1078-0432.CCR-13-0358. PubMedCrossRefGoogle Scholar
  62. 62.
    Perez EA, Barrios C, Eiermann W, Toi M, Im YH, Conte P, et al. Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: primary results from the phase III MARIANNE study. J Clin Oncol. 2017;35(2):141–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Boku N. HER2-positive gastric cancer. Gastric Cancer. 2014;17(1):1–12.  https://doi.org/10.1007/s10120-013-0252-z. PubMedCrossRefGoogle Scholar
  64. 64.
    Van Cutsem E, Bang YJ, Feng-Yi F, Xu JM, Lee KW, Jiao SC, et al. HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer. 2015;18(3):476–84.  https://doi.org/10.1007/s10120-014-0402-y. PubMedCrossRefGoogle Scholar
  65. 65.
    Thuss-Patience PC, Shah MA, Ohtsu A, Van Cutsem E, Ajani JA, Castro H, et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol. 2017;18(5):640–53.  https://doi.org/10.1016/S1470-2045(17)30111-0.
  66. 66.
    Ruschoff J, Hanna W, Bilous M, Hofmann M, Osamura RY, Penault-Llorca F, et al. HER2 testing in gastric cancer: a practical approach. Mod Pathol. 2012;25(5):637–50.  https://doi.org/10.1038/modpathol.2011.198. PubMedCrossRefGoogle Scholar
  67. 67.
    Peng Z, Zou J, Zhang X, Yang Y, Gao J, Li Y, et al. HER2 discordance between paired primary gastric cancer and metastasis: a meta-analysis. Chin J Cancer Res. 2015;27(2):163–71.  https://doi.org/10.3978/j.issn.1000-9604.2014.12.09. PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Barok M, Joensuu H, Isola J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res. 2014;16(2):209.  https://doi.org/10.1186/bcr3621. PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Loganzo F, Tan X, Sung M, Jin G, Myers JS, Melamud E, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther. 2015;14(4):952–63.  https://doi.org/10.1158/1535-7163.MCT-14-0862.PubMedCrossRefGoogle Scholar
  70. 70.
    Sendur MA, Aksoy S, Altundag K. Cardiotoxicity of novel HER2-targeted therapies. Curr Med Res Opin. 2013;29(8):1015–24.  https://doi.org/10.1185/03007995.2013.807232.PubMedCrossRefGoogle Scholar
  71. 71.
    Bardia A, Mayer IA, Diamond JR, Moroose RL, Isakoff SJ, Starodub AN, et al. Efficacy and safety of anti-Trop-2 antibody drug conjugate Sacituzumab Govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol. 2017;35(19):2141–8.  https://doi.org/10.1200/JCO.2016.70.8297.
  72. 72.
    Heist RS, Guarino MJ, Masters G, Purcell WT, Starodub AN, Horn L, et al. Therapy of advanced non-small-cell lung cancer with an SN-38-anti-Trop-2 drug conjugate, Sacituzumab Govitecan. J Clin Oncol. 2017;35(24):2790–7.  https://doi.org/10.1200/JCO.2016.72.1894.
  73. 73.
    Faltas B, Goldenberg DM, Ocean AJ, Govindan SV, Wilhelm F, Sharkey RM, et al. Sacituzumab Govitecan, a novel antibody--drug conjugate, in patients with metastatic platinum-resistant Urothelial carcinoma. Clin Genitourin Cancer. 2016;14(1):e75–9.  https://doi.org/10.1016/j.clgc.2015.10.002.
  74. 74.
    Yardley DA, Weaver R, Melisko ME, Saleh MN, Arena FP, Forero A, et al. EMERGE: a randomized phase II study of the antibody-drug conjugate Glembatumumab Vedotin in advanced glycoprotein NMB-expressing breast cancer. J Clin Oncol. 2015;33(14):1609–19.  https://doi.org/10.1200/JCO.2014.56.2959.
  75. 75.
    Ott PA, Hamid O, Pavlick AC, Kluger H, Kim KB, Boasberg PD, et al. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J Clin Oncol. 2014;32(32):3659–66.  https://doi.org/10.1200/JCO.2013.54.8115. PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lipinski M, Parks DR, Rouse RV, Herzenberg LA. Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc Natl Acad Sci U S A. 1981;78(8):5147–50.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ripani E, Sacchetti A, Corda D, Alberti S. Human Trop-2 is a tumor-associated calcium signal transducer. Int J Cancer. 1998;76(5):671–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Cardillo TM, Govindan SV, Sharkey RM, Trisal P, Goldenberg DM. Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin Cancer Res. 2011;17(10):3157–69.  https://doi.org/10.1158/1078-0432.CCR-10-2939. PubMedCrossRefGoogle Scholar
  79. 79.
    Trerotola M, Cantanelli P, Guerra E, Tripaldi R, Aloisi AL, Bonasera V, et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene. 2013;32(2):222–33.  https://doi.org/10.1038/onc.2012.36.PubMedCrossRefGoogle Scholar
  80. 80.
    Lin H, Huang JF, Qiu JR, Zhang HL, Tang XJ, Li H, et al. Significantly upregulated TACSTD2 and Cyclin D1 correlate with poor prognosis of invasive ductal breast cancer. Exp Mol Pathol. 2013;94(1):73–8.  https://doi.org/10.1016/j.yexmp.2012.08.004.PubMedCrossRefGoogle Scholar
  81. 81.
    Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP. Mechanism of action of camptothecin. Ann N Y Acad Sci. 2000;922:1–10.PubMedCrossRefGoogle Scholar
  82. 82.
    Xu Y. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol. 2002;13(12):1841–51.  https://doi.org/10.1093/annonc/mdf337. PubMedCrossRefGoogle Scholar
  83. 83.
    Cardillo TM, Govindan SV, Sharkey RM, Trisal P, Arrojo R, Liu D, et al. Sacituzumab Govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem. 2015;26(5):919–31.  https://doi.org/10.1021/acs.bioconjchem.5b00223.PubMedCrossRefGoogle Scholar
  84. 84.
    Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res. 2001;7(8):2182–94.PubMedGoogle Scholar
  85. 85.
    Weterman MA, Ajubi N, van Dinter IM, Degen WG, van Muijen GN, Ruitter DJ, et al. Nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer. 1995;60(1):73–81.PubMedCrossRefGoogle Scholar
  86. 86.
    Ripoll VM, Irvine KM, Ravasi T, Sweet MJ, Hume DA. Gpnmb is induced in macrophages by IFN-gamma and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses. J Immunol. 2007;178(10):6557–66.PubMedCrossRefGoogle Scholar
  87. 87.
    Abdelmagid SM, Barbe MF, Rico MC, Salihoglu S, Arango-Hisijara I, Selim AH, et al. Osteoactivin, an anabolic factor that regulates osteoblast differentiation and function. Exp Cell Res. 2008;314(13):2334–51.  https://doi.org/10.1016/j.yexcr.2008.02.006.PubMedCrossRefGoogle Scholar
  88. 88.
    Selim AA, Abdelmagid SM, Kanaan RA, Smock SL, Owen TA, Popoff SN, et al. Anti-osteoactivin antibody inhibits osteoblast differentiation and function in vitro. Crit Rev Eukaryot Gene Expr. 2003;13(2–4):265–75.PubMedGoogle Scholar
  89. 89.
    Rose AA, Grosset AA, Dong Z, Russo C, Macdonald PA, Bertos NR, et al. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res. 2010;16(7):2147–56.  https://doi.org/10.1158/1078-0432.CCR-09-1611. PubMedCrossRefGoogle Scholar
  90. 90.
    Kuan CT, Wakiya K, Dowell JM, Herndon JE 2nd, Reardon DA, Graner MW, et al. Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme. Clin Cancer Res. 2006;12(7 Pt 1):1970–82.  https://doi.org/10.1158/1078-0432.CCR-05-2797. PubMedCrossRefGoogle Scholar
  91. 91.
    Rich JN, Shi Q, Hjelmeland M, Cummings TJ, Kuan CT, Bigner DD, et al. Bone-related genes expressed in advanced malignancies induce invasion and metastasis in a genetically defined human cancer model. J Biol Chem. 2003;278(18):15951–7.  https://doi.org/10.1074/jbc.M211498200. PubMedCrossRefGoogle Scholar
  92. 92.
    Rose AA, Annis MG, Dong Z, Pepin F, Hallett M, Park M, et al. ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS One. 2010;5(8):e12093.  https://doi.org/10.1371/journal.pone.0012093.
  93. 93.
    Tse KF, Jeffers M, Pollack VA, McCabe DA, Shadish ML, Khramtsov NV, et al. CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma. Clin Cancer Res. 2006;12(4):1373–82.  https://doi.org/10.1158/1078-0432.CCR-05-2018. PubMedCrossRefGoogle Scholar
  94. 94.
    Pollack VA, Alvarez E, Tse KF, Torgov MY, Xie S, Shenoy SG, et al. Treatment parameters modulating regression of human melanoma xenografts by an antibody-drug conjugate (CR011-vcMMAE) targeting GPNMB. Cancer Chemother Pharmacol. 2007;60(3):423–35.  https://doi.org/10.1007/s00280-007-0490-z.PubMedCrossRefGoogle Scholar
  95. 95.
    Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL. Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet. 2011;20(5):905–16.  https://doi.org/10.1093/hmg/ddq529.PubMedCrossRefGoogle Scholar
  96. 96.
    Morimoto M, Nishinakamura R, Saga Y, Kopan R. Different assemblies of notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development. 2012;139(23):4365–73.  https://doi.org/10.1242/dev.083840.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kunnimalaiyaan M, Chen H. Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. Oncologist. 2007;12(5):535–42.  https://doi.org/10.1634/theoncologist.12-5-535.PubMedCrossRefGoogle Scholar
  98. 98.
    Saunders LR, Bankovich AJ, Anderson WC, Aujay MA, Bheddah S, Black K, et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 2015;7(302):302ra136.  https://doi.org/10.1126/scitranslmed.aac9459.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Rudin CM, Pietanza MC, Bauer TM, Ready N, Morgensztern D, Glisson BS, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017;18(1):42–51.  https://doi.org/10.1016/S1470-2045(16)30565-4.PubMedCrossRefGoogle Scholar
  100. 100.
    Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev. 2004;56(8):1067–84.  https://doi.org/10.1016/j.addr.2004.01.001.PubMedCrossRefGoogle Scholar
  101. 101.
    Salazar MD, Ratnam M. The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev. 2007;26(1):141–52.  https://doi.org/10.1007/s10555-007-9048-0.PubMedCrossRefGoogle Scholar
  102. 102.
    Ledermann JA, Canevari S, Thigpen T. Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Ann Oncol. 2015;26(10):2034–43.  https://doi.org/10.1093/annonc/mdv250. PubMedCrossRefGoogle Scholar
  103. 103.
    Toffoli G, Russo A, Gallo A, Cernigoi C, Miotti S, Sorio R, et al. Expression of folate binding protein as a prognostic factor for response to platinum-containing chemotherapy and survival in human ovarian cancer. Int J Cancer. 1998;79(2):121–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Kalli KR, Oberg AL, Keeney GL, Christianson TJ, Low PS, Knutson KL, et al. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol. 2008;108(3):619–26.  https://doi.org/10.1016/j.ygyno.2007.11.020.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Widdison WC, Wilhelm SD, Cavanagh EE, Whiteman KR, Leece BA, Kovtun Y, et al. Semisynthetic maytansine analogues for the targeted treatment of cancer. J Med Chem. 2006;49(14):4392–408.  https://doi.org/10.1021/jm060319f.PubMedCrossRefGoogle Scholar
  106. 106.
    Ab O, Whiteman KR, Bartle LM, Sun X, Singh R, Tavares D, et al. IMGN853, a Folate receptor-alpha (FRalpha)-targeting antibody-drug conjugate, exhibits potent targeted antitumor activity against FRalpha-expressing Tumors. Mol Cancer Ther. 2015;14(7):1605–13.  https://doi.org/10.1158/1535-7163.MCT-14-1095.
  107. 107.
    Moore KN, Martin LP, O'Malley DM, Matulonis UA, Konner JA, Perez RP, et al. Safety and activity of Mirvetuximab Soravtansine (IMGN853), a Folate receptor alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: a phase I expansion study. J Clin Oncol. 2017;35(10):1112–8.  https://doi.org/10.1200/JCO.2016.69.9538.
  108. 108.
    Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin Oncol. 2006;33(4):369–85.  https://doi.org/10.1053/j.seminoncol.2006.04.003.PubMedCrossRefGoogle Scholar
  109. 109.
    Chong CR, Janne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013;19(11):1389–400.  https://doi.org/10.1038/nm.3388.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Gan HK, Burgess AW, Clayton AH, Scott AM. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res. 2012;72(12):2924–30.  https://doi.org/10.1158/0008-5472.CAN-11-3898.PubMedCrossRefGoogle Scholar
  111. 111.
    Gan HK, Burge ME, Solomon BJ, Holen KD, Zhang Y, Ciprotti M, et al. A phase I and biodistribution study of ABT-806i, an 111indium-labeled conjugate of the tumor-specific anti-EGFR antibody ABT-806. J Clin Oncol. 2013;31(15_suppl):2520.  https://doi.org/10.1200/jco.2013.31.15_suppl.2520.CrossRefGoogle Scholar
  112. 112.
    Phillips AC, Boghaert ER, Vaidya KS, Mitten MJ, Norvell S, Falls HD, et al. ABT-414, an antibody-drug conjugate targeting a tumor-selective EGFR Epitope. Mol Cancer Ther. 2016;15(4):661–9.  https://doi.org/10.1158/1535-7163.MCT-15-0901.
  113. 113.
    Gan HK, Fichtel L, Lassman A, Merrell R, Bent M, Kumthekar P. A phase I study evaluating ABT414 with concurrent radiotherapy (RT) and temozolomide (TMZ) in glioblastoma (GBM) [abstract no. ET-19]. Neuro Oncol. 2014;16(Suppl 5):v83.Google Scholar
  114. 114.
    Reardon DA, Lassman AB, van den Bent M, Kumthekar P, Merrell R, Scott AM, et al. Efficacy and safety results of ABT-414 in combination with radiation and temozolomide in newly diagnosed glioblastoma. Neuro Oncol. 2017 Jul 1;19(7):965–75.  https://doi.org/10.1093/neuonc/now257.
  115. 115.
    Di Paolo C, Willuda J, Kubetzko S, Lauffer I, Tschudi D, Waibel R, et al. A recombinant immunotoxin derived from a humanized epithelial cell adhesion molecule-specific single-chain antibody fragment has potent and selective antitumor activity. Clin Cancer Res. 2003;9(7):2837–48.PubMedGoogle Scholar
  116. 116.
    Balzar M, Winter MJ, de Boer CJ, Litvinov SV. The biology of the 17-1A antigen (Ep-CAM). J Mol Med (Berl). 1999;77(10):699–712.CrossRefGoogle Scholar
  117. 117.
    Oppenheimer NJ, Bodley JW. Diphtheria toxin. Site and configuration of ADP-ribosylation of diphthamide in elongation factor 2. J Biol Chem. 1981;256(16):8579–81.PubMedGoogle Scholar
  118. 118.
    Perentesis JP, Miller SP, Bodley JW. Protein toxin inhibitors of protein synthesis. Biofactors. 1992;3(3):173–84.PubMedGoogle Scholar
  119. 119.
    Kowalski M, Guindon J, Brazas L, Moore C, Entwistle J, Cizeau J, et al. A phase II study of oportuzumab monatox: an immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with bacillus Calmette-Guerin. J Urol. 2012;188(5):1712–8.  https://doi.org/10.1016/j.juro.2012.07.020.PubMedCrossRefGoogle Scholar
  120. 120.
    Manning DL, Daly RJ, Lord PG, Kelly KF, Green CD. Effects of oestrogen on the expression of a 4.4 kb mRNA in the ZR-75-1 human breast cancer cell line. Mol Cell Endocrinol. 1988;59(3):205–12.PubMedCrossRefGoogle Scholar
  121. 121.
    Taylor KM, Morgan HE, Johnson A, Hadley LJ, Nicholson RI. Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. Biochem J. 2003;375(Pt 1):51–9.  https://doi.org/10.1042/BJ20030478. PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Taylor KM, Hiscox S, Nicholson RI. Zinc transporter LIV-1: a link between cellular development and cancer progression. Trends Endocrinol Metab. 2004;15(10):461–3.  https://doi.org/10.1016/j.tem.2004.10.003. PubMedCrossRefGoogle Scholar
  123. 123.
    Sussman D, Smith LM, Anderson ME, Duniho S, Hunter JH, Kostner H, et al. SGN-LIV1A: a novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer Ther. 2014;13(12):2991–3000.  https://doi.org/10.1158/1535-7163.MCT-13-0896.PubMedCrossRefGoogle Scholar
  124. 124.
    Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA Topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22(20):5097–108.  https://doi.org/10.1158/1078-0432.CCR-15-2822. PubMedCrossRefGoogle Scholar
  125. 125.
    Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107(7):1039–46.  https://doi.org/10.1111/cas.12966.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Shiose Y, Ochi Y, Kuga H, Yamashita F, Hashida M. Relationship between drug release of DE-310, macromolecular prodrug of DX-8951f, and cathepsins activity in several tumors. Biol Pharm Bull. 2007;30(12):2365–70.PubMedCrossRefGoogle Scholar
  127. 127.
    Nakada T, Masuda T, Naito H, Yoshida M, Ashida S, Morita K, et al. Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorg Med Chem Lett. 2016;26(6):1542–5.  https://doi.org/10.1016/j.bmcl.2016.02.020.PubMedCrossRefGoogle Scholar
  128. 128.
    Bergstrom D, Bodyak N, Park P, Yurkovetskiy A, DeVit M, Yin M, et al. XMT-1522 induces tumor regressions in pre-clinical models representing HER2-positive and HER2 low-expressing breast cancer [abstract no. P4-14-28]. Cancer Res. 2016;76(4 Suppl):P4-14-28-P4-14-28.  https://doi.org/10.1158/1538-7445.sabcs15-p4-14-28.
  129. 129.
    Hamilton GS. Antibody-drug conjugates for cancer therapy: the technological and regulatory challenges of developing drug-biologic hybrids. Biologicals. 2015;43(5):318–32.  https://doi.org/10.1016/j.biologicals.2015.05.006. PubMedCrossRefGoogle Scholar
  130. 130.
    Baselga J, Lewis Phillips GD, Verma S, Ro J, Huober J, Guardino AE, et al. Relationship between tumor biomarkers and efficacy in EMILIA, a phase III study of Trastuzumab Emtansine in HER2-positive metastatic breast cancer. Clin Cancer Res. 2016;22(15):3755–63.  https://doi.org/10.1158/1078-0432.CCR-15-2499.
  131. 131.
    Baselga J, Cortes J, Im SA, Clark E, Ross G, Kiermaier A, et al. Biomarker analyses in CLEOPATRA: a phase III, placebo-controlled study of pertuzumab in human epidermal growth factor receptor 2-positive, first-line metastatic breast cancer. J Clin Oncol. 2014;32(33):3753–61.  https://doi.org/10.1200/JCO.2013.54.5384.PubMedCrossRefGoogle Scholar
  132. 132.
    Ritchie M, Tchistiakova L, Scott N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. MAbs. 2013;5(1):13–21.  https://doi.org/10.4161/mabs.22854.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Muller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7(315):315ra188.  https://doi.org/10.1126/scitranslmed.aac4925.PubMedCrossRefGoogle Scholar
  134. 134.
    Cardillo TM, Sharkey RM, Rossi DL, Arrojo R, Mostafa AA, Goldenberg DM. Synthetic lethality exploitation by an anti-Trop-2-SN-38 antibody-drug conjugate, IMMU-132, plus PARP inhibitors in BRCA1/2-wild-type triple-negative breast cancer. Clin Cancer Res. 2017 Jul 1;23(13):3405–15.  https://doi.org/10.1158/1078-0432.CCR-16-2401.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Aiko Nagayama
    • 1
  • Leif W. Ellisen
    • 1
  • Bruce Chabner
    • 1
  • Aditya Bardia
    • 1
  1. 1.Massachusetts General Hospital Cancer CenterHarvard Medical SchoolBostonUSA

Personalised recommendations