Targeted Oncology

, Volume 12, Issue 6, pp 709–718 | Cite as

The Current Landscape of Anaplastic Lymphoma Kinase (ALK) in Non-Small Cell Lung Cancer: Emerging Treatment Paradigms and Future Directions

Review Article

Abstract

Tumorigenic rearrangements in anaplastic lymphoma kinase (ALK) account for 3–7% of all non-small cell lung cancers (NSCLC). Treatment with targeted tyrosine kinase inhibitors (TKIs) has shown impressive clinical responses. Crizotinib was the first agent approved for front-line therapy of ALK-rearranged NSCLC after it demonstrated superiority to chemotherapy in response rate, duration of response, and progression-free survival. However, eventually all patients progress on crizotinib therapy, with the central nervous system (CNS) being the most common site, which served as the impetus for the development of more potent next-generation ALK inhibitors. Currently, ceritinib, alectinib, and brigatinib are all approved for second-line therapy after progression on or intolerance to crizotinib. Investigations into whether the initiation of a second-generation ALK inhibitor as first-line therapy is the superior treatment paradigm has resulted in the approval of ceritinib as initial therapy. Alectinib has also shown impressive results as front-line therapy, as recently reported in two large randomized studies that compared it to crizotinib. There is a significant need to better understand the drivers of and mechanisms underlying resistance to ALK inhibitors. While specific mutations have been identified, there is currently only limited evidence that the identification of specific mutations should impact selection of the next ALK inhibitor. The best treatment option for patients who become TKI refractory is also unclear, though there is some evidence to suggests that these patients are not responsive to checkpoint inhibitors and may respond better to chemotherapy. Combination therapy with other classes of agents may help to overcome resistance mechanisms and should be investigated further.

Notes

Compliance with Ethical Standards

Funding

Angel Qin is supported by the National Institute of Health Oncology Research Training Grant 5T32CA009357-35.

Conflicts of Interest

Angel Qin has no conflicts of interest to declare. Shirish Gadgeel has received consulting fees or honorarium from Genentech/Roche, Ariad, Pfizer, Novartis, and Astra-Zeneca.

References

  1. 1.
    Tsao AS, Scagliotti GV, Bunn PA, Carbone DP, Warren GW, Bai C, et al. Scientific advances in lung cancer 2015. J Thorac Oncol. 2016;11:613–38.CrossRefPubMedGoogle Scholar
  2. 2.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Yoshida T, Oya Y, Tanaka K, Shimizu J, Horio Y, Kuroda H, et al. Differential crizotinib response duration among ALK fusion variants in ALK-positive non-small-cell lung cancer. J Clin Oncol. 2016;34:3383–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Ou S-HI, Schrock AB, Gowen K, Stephens PJ, Ross JS, Johnson ML, et al. Association of ALK resistance mutations by EML4-ALK variant (v3 vs. non-v3) in ALK+ non-small cell lung cancer (NSCLC). J Clin Oncol. 2017;35(Suppl 15):9010.Google Scholar
  5. 5.
    Takeuchi K, Choi YL, Togashi Y, Soda M, Hatano S, Inamura K, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 2009;15:3143–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Togashi Y, Soda M, Sakata S, Sugawara E, Hatano S, Asaka R, et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One. 2012;7:e31323.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jung Y, Kim P, Jung Y, Keum J, Kim S-N, Choi YS, et al. Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing. Genes Chromosom Cancer. 2012;51:590–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Lin JJ, Riely GJ, Shaw AT. Targeting ALK: precision medicine takes on drug resistance. Cancer Discov. 2017;7:137–55.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fan L, Feng Y, Wan H, Shi G, Niu W. Clinicopathological and demographical characteristics of non-small cell lung cancer patients with ALK rearrangements: a systematic review and meta-analysis. PLoS One. 2014;9:e100866.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Solomon B, Varella-Garcia M, Camidge DR. ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol. 2009;4:1450–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Guérin A, Sasane M, Zhang J, Macalalad AR, Galebach P, Jarvis J, et al. ALK rearrangement testing and treatment patterns for patients with ALK-positive non-small cell lung cancer. Cancer Epidemiol. 2015;39:307–12.CrossRefPubMedGoogle Scholar
  12. 12.
    Wallander ML, Geiersbach KB, Tripp SR, Layfield LJ. Comparison of reverse transcription-polymerase chain reaction, immunohistochemistry, and fluorescence in situ hybridization methodologies for detection of echinoderm microtubule-associated proteinlike 4-anaplastic lymphoma kinase fusion-positive non-small cell lung carcinoma: implications for optimal clinical testing. Arch Pathol Lab Med. 2012;136:796–803.CrossRefPubMedGoogle Scholar
  13. 13.
    Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 2013;8:823–59.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cabillic F, Gros A, Dugay F, Begueret H, Mesturoux L, Chiforeanu DC, et al. Parallel FISH and immunohistochemical studies of ALK status in 3244 non-small-cell lung cancers reveal major discordances. J Thorac Oncol. 2014;9:295–306.CrossRefPubMedGoogle Scholar
  15. 15.
    Abel HJ, Al-Kateb H, Cottrell CE, Bredemeyer AJ, Pritchard CC, Grossmann AH, et al. Detection of gene rearrangements in targeted clinical next-generation sequencing. J Mol Diagn. 2014;16:405–17.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Camidge DR, Bang Y-J, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012;13:1011–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shaw AT, Kim D-W, Nakagawa K, Seto T, Crinó L, Ahn M-J, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94.CrossRefPubMedGoogle Scholar
  18. 18.
    Solomon BJ, Mok T, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371:2167–77.CrossRefPubMedGoogle Scholar
  19. 19.
    Maka VV, Krishnaswamy UM, Anil Kumar N, Chitrapur R, Kilara N. Acute interstitial lung disease in a patient with anaplastic lymphoma kinase-positive non-small-cell lung cancer after crizotinib therapy. Oxf Med Case Rep. 2014;2014:11–2.CrossRefGoogle Scholar
  20. 20.
    Steuer CE, Ramalingam SS. ALK-positive non-small cell lung cancer: mechanisms of resistance and emerging treatment options. Cancer. 2014;120:2392–402.CrossRefPubMedGoogle Scholar
  21. 21.
    Awad MM, Shaw AT. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin Adv Hematol Oncol. 2014;12:429–39.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Costa DB, Shaw AT, Ou S-HI, Solomon BJ, Riely GJ, Ahn M-J, et al. Clinical experience with Crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol. 2015;33:1881–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Costa DB, Kobayashi S, Pandya SS, Yeo W-L, Shen Z, Tan W, et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol. 2011;29:e443–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Shaw AT, Kim TM, Crinò L, Gridelli C, Kiura K, Liu G, et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017;18:874–86.CrossRefPubMedGoogle Scholar
  25. 25.
    Shaw AT, Gandhi L, Gadgeel S, Riely GJ, Cetnar J, West H, et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol. 2016;17:234–42.CrossRefPubMedGoogle Scholar
  26. 26.
    Ou S-HI, Ahn JS, De Petris L, Govindan R, Yang JC-H, Hughes B, et al. Alectinib in Crizotinib-refractory ALK-rearranged non-small-cell lung cancer: a phase II global study. J Clin Oncol. 2016;34:661–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Kim D-W, Tiseo M, Ahn M-J, Reckamp KL, Hansen KH, Kim S-W, et al. Brigatinib in patients with Crizotinib-refractory Anaplastic lymphoma Kinase-positive non-small-cell lung cancer: a randomized, multicenter phase II trial. J Clin Oncol. 2017;35:2490–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Shaw AT, Kim D-W, Mehra R, Tan DSW, Felip E, Chow LQM, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370:1189–97.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Crinò L, Ahn M-J, De Marinis F, Groen HJM, Wakelee H, Hida T, et al. Multicenter phase II study of whole-body and intracranial activity with Ceritinib in patients with ALK-rearranged non-small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2. J Clin Oncol. 2016;34:2866–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014;15:1119–28.CrossRefPubMedGoogle Scholar
  31. 31.
    Seto T, Kiura K, Nishio M, Nakagawa K, Maemondo M, Inoue A, et al. CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study. Lancet Oncol. 2013;14:590–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang S, Anjum R, Squillace R, Nadworny S, Zhou T, Keats J, et al. The potent ALK inhibitor Brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin Cancer Res. 2016;22:5527–38.CrossRefPubMedGoogle Scholar
  33. 33.
    Gettinger SN, Bazhenova LA, Langer CJ, Salgia R, Gold KA, Rosell R, et al. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial. Lancet Oncol. 2016;17:1683–96.CrossRefPubMedGoogle Scholar
  34. 34.
    Rosell R, Gettinger SN, Bazhenova LA, Langer CJ, Salgia R, Shaw AT, et al. 1330: Brigatinib efficacy and safety in patients (pts) with anaplastic lymphoma kinase (ALK)-positive (ALK+) non-small cell lung cancer (NSCLC) in a phase 1/2 trial. J Thorac Oncol. 2016;11:S114.CrossRefPubMedGoogle Scholar
  35. 35.
    Kim D-W, Tiseo M, Ahn M-J, Reckamp KL, Hansen KH, Kim S-W, et al. Brigatinib (BRG) in patients (pts) with crizotinib (CRZ)-refractory ALK+ non-small cell lung cancer (NSCLC): First report of efficacy and safety from a pivotal randomized phase (ph) 2 trial (ALTA). J Clin Oncol. 2016;34(Suppl 15):9007.Google Scholar
  36. 36.
    Zou HY, Friboulet L, Kodack DP, Engstrom LD, Li Q, West M, et al. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell. 2015;28:70–81.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shaw AT, Ignatius Ou S-H, Felip E, Bauer TM, Besse B, Gadgeel SM. Efficacy and safety of lorlatinib in patients (pts) with ALK+ non-small cell lung cancer (NSCLC) with one or more prior ALK tyrosine kinase inhibitor (TKI): a phase I/II study. J Clin Oncol. 2017;35(Suppl 15):9006.Google Scholar
  38. 38.
    Drilon A, Siena S, Ou S-HI, Patel M, Ahn MJ, Lee J, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor Entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017;7:400–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Horn L, Wakelee H, Reckamp KL, Blumenschein G, Infante JR, Carter CA, et al. MINI01.02: response and plasma genotyping from phase I/II trial of Ensartinib (X-396) in patients (pts) with ALK+ NSCLC: topic: medical oncology. J Thorac Oncol. 2016;11:S256–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Soria J-C, Tan DSW, Chiari R, Wu Y-L, Paz-Ares L, Wolf J, et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet. 2017;389:917–29.CrossRefPubMedGoogle Scholar
  41. 41.
    Gainor JF, Tan DSW, De Pas T, Solomon BJ, Ahmad A, Lazzari C, et al. Progression-free and overall survival in ALK-positive NSCLC patients treated with sequential crizotinib and ceritinib. Clin Cancer Res. 2015;21:2745–52.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cho BC, Kim D-W, Bearz A, Laurie SA, McKeage M, Borra G, et al. ASCEND-8: a randomized phase 1 study of ceritinib 450 mg or 600 mg taken with a low-fat meal versus 750 mg in fasted state in patients with anaplastic lymphoma kinase (ALK)-rearranged metastatic non-small cell lung cancer (NSCLC). J Thorac Oncol. 2017;12(9):1357-67.Google Scholar
  43. 43.
    Nokihara H, Hida T, Kondo M, Kim YH, Azuma K, Seto T, et al. Alectinib (ALC) versus crizotinib (CRZ) in ALK-inhibitor naive ALK-positive non-small cell lung cancer (ALK+ NSCLC): Primary results from the J-ALEX study. J Clin Oncol. 2016;34(Suppl 15):9008.Google Scholar
  44. 44.
    Hida T, Nokihara H, Kondo M, Kim YH, Azuma K, Seto T, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet. 2017;390:29–39.CrossRefPubMedGoogle Scholar
  45. 45.
    Shaw AT, Peters S, Mok T, Gadgeel SM, Ahn JS, Ou S-HI. Alectinib versus crizotinib in treatment-naive advanced ALK-positive non-small cell lung cancer (NSCLC): primary results of the global phase III ALEX study. J Clin Oncol. 2017;35. http://abstracts.asco.org/199/AbstView_199_185951.html. Accessed 13 Aug 2006.
  46. 46.
    Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim D-W, et al.; ALEX Trial Investigators. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med.  https://doi.org/10.1056/NEJMoa1704795.
  47. 47.
    Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 2016;6:1118–33.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Shaw AT, Friboulet L, Leshchiner I, Gainor JF, Bergqvist S, Brooun A, et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N Engl J Med. 2016;374:54–61.CrossRefPubMedGoogle Scholar
  49. 49.
    Morodomi Y, Takenoyama M, Inamasu E, Toyozawa R, Kojo M, Toyokawa G, et al. Non-small cell lung cancer patients with EML4-ALK fusion gene are insensitive to cytotoxic chemotherapy. Anticancer Res. 2014;34:3825–30.PubMedGoogle Scholar
  50. 50.
    Shaw AT, Varghese AM, Solomon BJ, Costa DB, Novello S, Mino-Kenudson M, et al. Pemetrexed-based chemotherapy in patients with advanced, ALK-positive non-small cell lung cancer. Ann Oncol. 2013;24:59–66.CrossRefPubMedGoogle Scholar
  51. 51.
    Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50.CrossRefPubMedGoogle Scholar
  52. 52.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus Docetaxel in advanced Nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced Squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46.CrossRefPubMedGoogle Scholar
  55. 55.
    Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al.; KEYNOTE-024 Investigators. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375(19):1823–33Google Scholar
  56. 56.
    Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ota K, Azuma K, Kawahara A, Hattori S, Iwama E, Tanizaki J, et al. Induction of PD-L1 expression by the EML4-ALK Oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin Cancer Res. 2015;21:4014–21.CrossRefPubMedGoogle Scholar
  58. 58.
    Abdelhamed S, Ogura K, Yokoyama S, Saiki I, Hayakawa Y. AKT-STAT3 pathway as a downstream target of EGFR signaling to regulate PD-L1 expression on NSCLC cells. J Cancer. 2016;7:1579–86.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res. 2016;22:4585–93.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Garassino MC, Cho B-C, Gray JE, Mazières J, Park K, Soo RA, et al. 82O. Durvalumab in ≥ 3rd-line EGFR mutant/ALK+, locally advanced or metastatic NSCLC: results from the phase 2 ATLANTIC study. Ann Oncol. 2017;28(Suppl 2):ii28-51.Google Scholar
  61. 61.
    Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65.CrossRefPubMedGoogle Scholar
  62. 62.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Zhang I, Zaorsky NG, Palmer JD, Mehra R, Lu B. Targeting brain metastases in ALK-rearranged non-small-cell lung cancer. Lancet Oncol. 2015;16:e510–21.CrossRefPubMedGoogle Scholar
  64. 64.
    Mak KS, Gainor JF, Niemierko A, Oh KS, Willers H, Choi NC, et al. Significance of targeted therapy and genetic alterations in EGFR, ALK, or KRAS on survival in patients with non-small cell lung cancer treated with radiotherapy for brain metastases. Neuro-Oncology. 2015;17:296–302.CrossRefPubMedGoogle Scholar
  65. 65.
    Weickhardt AJ, Scheier B, Burke JM, Gan G, Lu X, Bunn PA, et al. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene addicted non-small cell lung cancer. J Thorac Oncol. 2012;7:1807–14.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Katayama R, Lovly CM, Shaw AT. Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Cancer Res. 2015;21:2227–35.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Internal Medicine, Division of Hematology and OncologyUniversity of MichiganAnn ArborUSA

Personalised recommendations