Targeted Oncology

, Volume 12, Issue 6, pp 741–755 | Cite as

Targeting FGFR in Squamous Cell Carcinoma of the Lung

Review Article

Abstract

Unlike for adenocarcinomas of the lung, no molecular targeted therapies have yet been developed for squamous cell lung cancers, because targetable oncogenic aberrations are scarce in this tumor type. Recent discoveries have established that the fibroblast growth factor (FGF) signaling pathway plays a fundamental role in cancer development by supporting tumor angiogenesis and cancer cell proliferation via different mechanisms. Through comprehensive genomic studies, aberrations in the FGF pathway have been identified in various tumor types, including squamous cell lung cancer, making FGF receptor (FGFR) a potentially druggable target in this malignancy. Several multi-targeted tyrosine kinase inhibitors include FGFR in their target spectrum and a number of these compounds have been approved for clinical use in different cancers. Novel agents selectively targeting FGFRs have been developed and are currently under investigation in clinical trials, showing promising results. This article reviews FGFR aberrations and the clinical data involving selective and multikinase FGFR inhibitors in squamous cell lung cancer.

Notes

Compliance with Ethical Standards

Funding

None

Conflict of Interest

Dr. Hanna has received research funding from Merck and Bristol-Myers Squibb in the last 12 months. Dr. Hashemi-Sadraei declares no conflict of interest.

References

  1. 1.
    Travis WD. Pathology of lung cancer. Clin Chest Med. 2011;32(4):669–92.CrossRefPubMedGoogle Scholar
  2. 2.
    Rekhtman N, Paik PK, Arcila ME, Tafe LJ, Oxnard GR, Moreira AL, et al. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clin Cancer Res. 2012;18(4):1167–76.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marchetti A, Martella C, Felicioni L, Barassi F, Salvatore S, Chella A, et al. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol. 2005;23(4):857–65.CrossRefPubMedGoogle Scholar
  4. 4.
    Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. NEJM. 2010;363(18):1693–703.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Drilon A, Rekhtman N, Ladanyi M, Paik P. Squamous-cell carcinomas of the lung: emerging biology, controversies, and the promise of targeted therapy. Lancet Oncol. 2012;13(10):e418–26.CrossRefPubMedGoogle Scholar
  6. 6.
    Hammerman PS, Lawrence MS, Voet D, Jing R, Cibulskis K, Sivachenko A, et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.CrossRefGoogle Scholar
  7. 7.
    Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 2011;1(1):78–89.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM, et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med. 2010;2(62):62ra93.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dutt A, Ramos AH, Hammerman PS, Mermel C, Cho J, Sharifnia T, et al. Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS ONE. 2011;6(6):e20351.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29.CrossRefPubMedGoogle Scholar
  12. 12.
    Haugsten EM, Wiedlocha A, Olsnes S, Wesche J. Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res. 2010;8(11):1439–52.CrossRefPubMedGoogle Scholar
  13. 13.
    Wesche J, Haglund K, Haugsten EM. Fibroblast growth factors and their receptors in cancer. Biochem J. 2011;437(2):199–213.CrossRefPubMedGoogle Scholar
  14. 14.
    Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P, et al. Identification of a new fibroblast growth factor receptor, FGFR5. Gene. 2001;271(2):171–82.CrossRefPubMedGoogle Scholar
  15. 15.
    Olsen SK, Ibrahimi OA, Raucci A, Zhang F, Eliseenkova AV, Yayon A, et al. Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity. Proc Natl Acad Sci U S A. 2004;101(4):935–40.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Duchesne L, Tissot B, Rudd TR, Dell A, Fernig DG. N-glycosylation of fibroblast growth factor receptor 1 regulates ligand and heparan sulfate co-receptor binding. J Biol Chem. 2006;281(37):27178–89.CrossRefPubMedGoogle Scholar
  17. 17.
    Lieu C, Heymach J, Overman M, Tran H, Kopetz S. Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res. 2011;17(19):6130–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liao RG, Jung J, Tchaicha J, Wilkerson MD, Sivachenko A, Beauchamp EM, et al. Inhibitor-sensitive FGFR2 and FGFR3 mutations in lung squamous cell carcinoma. Cancer Res. 2013;73(16):5195–205.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang R, Wang L, Li Y, Hu H, Shen L, Shen X, et al. FGFR1/3 tyrosine kinase fusions define a unique molecular subtype of non-small cell lung cancer. Clin Cancer Res. 2014;20(15):4107–14.CrossRefPubMedGoogle Scholar
  20. 20.
    Capelletti M, Dodge ME, Ercan D, Hammerman PS, Park SI, Kim J, et al. Identification of recurrent FGFR3-TACC3 fusion oncogenes from lung adenocarcinoma. Clin Cancer Res. 2014;20(24):6551–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Schildhaus HU, Heukamp LC, Merkelbach-Bruse S, Riesner K, Schmitz K, Binot E, et al. Definition of a fluorescence in-situ hybridization score identifies high- and low-level FGFR1 amplification types in squamous cell lung cancer. Mod Pathol. 2012;25(11):1473–80.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Heist RS, Sequist LV, Engelman JA. Genetic changes in squamous cell lung cancer: a review. J Thorac Oncol. 2012;7(5):924–33.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–42.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhao X, Weir BA, LaFramboise T, Lin M, Beroukhim R, Garraway L, et al. Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res. 2005;65(13):5561–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Jiang T, Gao G, Fan G, Li M, Zhou C. FGFR1 amplification in lung squamous cell carcinoma: a systematic review with meta-analysis. Lung Cancer. 2015;87(1):1–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Cappellen D, De Oliveira C, Ricol D, de Medina S, Bourdin J, Sastre-Garau X, et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet. 1999;23(1):18–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen J, Lee BH, Williams IR, Kutok JL, Mitsiades CS, Duclos N, et al. FGFR3 as a therapeutic target of the small molecule inhibitor PKC412 in hematopoietic malignancies. Oncogene. 2005;24(56):8259–67.CrossRefPubMedGoogle Scholar
  28. 28.
    Qing J, Du X, Chen Y, Chan P, Li H, Wu P, et al. Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J Clin Invest. 2009;119(5):1216–29.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dutt A, Salvesen HB, Chen TH, Ramos AH, Onofrio RC, Hatton C, et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc Natl Acad Sci U S A. 2008;105(25):8713–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liao RG, Watanabe H, Meyerson M, Hammerman PS. Targeted therapy for squamous cell lung cancer. Lung Cancer Manag. 2012;1(4):293–300.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nelson KN, Meyer AN, Siari A, Campos AR, Motamedchaboki K, Donoghue DJ. Oncogenic Gene fusion FGFR3-TACC3 is regulated by tyrosine phosphorylation. Mol Cancer Res. 2016;14(5):458–69.CrossRefPubMedGoogle Scholar
  32. 32.
    Kim Y, Hammerman PS, Kim J, Yoon JA, Lee Y, Sun JM, et al. Integrative and comparative genomic analysis of lung squamous cell carcinomas in east Asian patients. J Clin Oncol. 2014;32(2):121–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013;3(6):636–47.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Marek L, Ware KE, Fritzsche A, Hercule P, Helton WR, Smith JE, et al. Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Mol Pharmacol. 2009;75(1):196–207.CrossRefPubMedGoogle Scholar
  35. 35.
    Kuhn H, Kopff C, Konrad J, Riedel A, Gessner C, Wirtz H. Influence of basic fibroblast growth factor on the proliferation of non-small cell lung cancer cell lines. Lung Cancer. 2004;44(2):167–74.CrossRefPubMedGoogle Scholar
  36. 36.
    Fischer H, Taylor N, Allerstorfer S, Grusch M, Sonvilla G, Holzmann K, et al. Fibroblast growth factor receptor-mediated signals contribute to the malignant phenotype of non-small cell lung cancer cells: therapeutic implications and synergism with epidermal growth factor receptor inhibition. Mol Cancer Ther. 2008;7(10):3408–19.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gozgit JM, Wong MJ, Moran L, Wardwell S, Mohemmad QK, Narasimhan NI, et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol Cancer Ther. 2012;11(3):690–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Wedge SR, Kendrew J, Hennequin LF, Valentine PJ, Barry ST, Brave SR, et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 2005;65(10):4389–400.CrossRefPubMedGoogle Scholar
  39. 39.
    Kumar R, Knick VB, Rudolph SK, Johnson JH, Crosby RM, Crouthamel MC, et al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther. 2007;6(7):2012–21.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang J, Zhang L, Su X, Li M, Xie L, Malchers F, et al. Translating the therapeutic potential of AZD4547 in FGFR1-amplified non-small cell lung cancer through the use of patient-derived tumor xenograft models. Clin Cancer Res. 2012;18(24):6658–67.CrossRefPubMedGoogle Scholar
  41. 41.
    Kuhn H, Konrad J, Holtz S, Salameh A, Gessner C, Hammerschmidt S, et al. Enhanced expression of VEGF following bFGF inhibition in non-small cell lung cancer cell lines. Lung Cancer. 2006;54(2):149–53.CrossRefPubMedGoogle Scholar
  42. 42.
    Gavine PR, Mooney L, Kilgour E, Thomas AP, Al-Kadhimi K, Beck S, et al. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 2012;72(8):2045–56.CrossRefPubMedGoogle Scholar
  43. 43.
    Guagnano V, Furet P, Spanka C, Bordas V, Le Douget M, Stamm C, et al. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamin o]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem. 2011;54(20):7066–83.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhao G, Li WY, Chen D, Henry JR, Li HY, Chen Z, et al. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. Mol Cancer Ther. 2011;10(11):2200–10.CrossRefPubMedGoogle Scholar
  45. 45.
    Hilberg F, Roth GJ, Krssak M, Kautschitsch S, Sommergruber W, Tontsch-Grunt U, et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 2008;68(12):4774–82.CrossRefPubMedGoogle Scholar
  46. 46.
    O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bello E, Colella G, Scarlato V, Oliva P, Berndt A, Valbusa G, et al. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res. 2011;71(4):1396–405.CrossRefPubMedGoogle Scholar
  48. 48.
    Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schutz G, et al. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129(1):245–55.CrossRefPubMedGoogle Scholar
  49. 49.
    Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008;122(3):664–71.CrossRefPubMedGoogle Scholar
  50. 50.
    Bhide RS, Cai ZW, Zhang YZ, Qian L, Wei D, Barbosa S, et al. Discovery and preclinical studies of (R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5- methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan- 2-ol (BMS-540215), an in vivo active potent VEGFR-2 inhibitor. J Med Chem. 2006;49(7):2143–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Andre F, Ranson M, Dean E, Varga A, van der Noll R, Stockman P et al. Results of a phase I study of AZD4547, an inhibitor of fibroblast growth fac- tor receptor (FGFR), in patients with advanced solid tumors. Cancer Res. 2013;73 (Suppl. 1) (abstr LB-145).Google Scholar
  52. 52.
    Paik P, Shen R, Ferry D, et al. A phase 1b open-label multicenter study of AZD4547 in patients with advanced squamous cell lung cancers: preliminary anti- tumor activity and pharmacodynamic data. J Clin Oncol. 2014;32 (suppl 5) (abstr 8035).Google Scholar
  53. 53.
    A Phase I/Randomized Phase II Study of Docetaxel With or Without AZD4547 in Recurrent FGFR1-Amplified Squamous Non-Small Cell Lung Cancer. ClinicalTrials.gov NCT01824901.
  54. 54.
    Smyth E, Turner N, Peckitt C. A. P, et al. Phase II multicenter proof of concept study of AZD4547 in FGFR amplified tumours. J Clin Oncol. 2015;33 (suppl) (abstr 2508).Google Scholar
  55. 55.
    Aggarwal C, Redman M, Primo Lara P, Borghaei H, Hoffman P, Bradley J et al. Phase II study of the FGFR inhibitor AZD4547 in previously treated patients with FGF pathway-activated stage IV squamous cell lung cancer (SqNSCLC): LUNG-MAP sub-study SWOG S1400D. J Clin Oncol. 2017;35 (suppl) (abstr 9055).Google Scholar
  56. 56.
    Guagnano V, Kauffmann A, Wohrle S, Stamm C, Ito M, Barys L, et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov. 2012;2(12):1118–33.CrossRefPubMedGoogle Scholar
  57. 57.
    Sequist L, Cassier P, Varga A, Tabernero J, et al. Phase I study of BGJ398, a selective pan-FGFR inhibitor in genetically preselected advanced solid tumors. Cancer Res. 2014;74(19 Suppl) (abstr CT326).Google Scholar
  58. 58.
    Nogova L, Sequist L, Cassier P, Hidalgo M, Delord J, et al. Targeting FGFR1-amplified lung squamous cell carcinoma with the selective pan-FGFR inhibitor BGJ398. J Clin Oncol. 2014;32 (suppl 5) (abstr 8034).Google Scholar
  59. 59.
    Hyman D, Tran B, Jaime J, Garralda E, et al. Phase Ib study of BGJ398 in combination with BYL719 in patients (pts) with select advanced solid tumors. J Clin Oncol. 2016;34 (suppl) (abstr 2500).Google Scholar
  60. 60.
    Perera T, Jovcheva E, Vialard J, et al. JNJ-42756493 is an inhibitor of FGFR-1, 2, 3 and 4 with nanomolar affinity for targeted therapy. Cancer Res 2014;74 (suppl 19) (abstr 1738).Google Scholar
  61. 61.
    Dienstmann R, Bahleda R, Adamo B, et al. First in human study of JNJ-42756493, a potent pan fibroblast growth factor receptor (FGFR) inhibitor in patients with advanced solid tumors. Cancer Res. 2014;74 (suppl 19) (abstr CT325).Google Scholar
  62. 62.
    Bahleda R, Dienstmann R, Adamo B, Gazzah A, et al. Phase 1 study of JNJ-42756493, a pan-fibroblast growth factor receptor (FGFR) inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2014; 32 (suppl 5) (abstr 2501).Google Scholar
  63. 63.
    Tie J, Gang Y-J, Young S, et al. A phase I trial of LY2874455, a fibroblast growth factor receptor inhibitor, in patients with advanced cancer. Cancer Res. 2014;74 (suppl 19) (abstr CT215).Google Scholar
  64. 64.
    Tie J, Bang Y, Park Y, et al. Phase I study of LY2874455, a fibroblast growth factor (FGF) receptor inhibitor, in patients with advanced cancer. Cancer Res. 2016;76 (Suppl 14) (abstr CT058).Google Scholar
  65. 65.
    Heroult M, Ellinghaus P, Sieg C, et al. Preclinical profile of BAY 1163877 – a selective pan-FGFR inhibitor in phase 1 clinical trial. Cancer Res. 2014;74 (Suppl. 19) (abstr 1739).Google Scholar
  66. 66.
    Héroult M, Ocker M, Kopitz C, et al. Antitumor efficacy of the selective panFGFR Inhibitor BAY 1163877 in preclinical squamous cell carcinoma models of different origin. Cancer Res. 2015;75 (suppl 15) (abstr 772).Google Scholar
  67. 67.
    Harding TC, Long L, Palencia S, Zhang H, Sadra A, Hestir K, et al. Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer. Sci Transl Med. 2013;5(178):178ra39.CrossRefPubMedGoogle Scholar
  68. 68.
    Tolcher AW, Papadopoulos KP, Patnaik A, Wilson K, Thayer S, Zanghi J, et al. A phase I, first in human study of FP-1039 (GSK3052230), a novel FGF ligand trap, in patients with advanced solid tumors. Ann Oncol. 2016;27(3):526–32.CrossRefPubMedGoogle Scholar
  69. 69.
    Lopez P, Felip E, Delord J, et al. Multiarm, nonrandomized, open-label phase IB study to evaluate FP1039/GSK3052230 with chemotherapy in NSCLC and MPM with deregulated FGF pathway signaling. J Clin Oncol. 2014; 32 (suppl 5) (abstr TPS8120).Google Scholar
  70. 70.
    Tabernero J, Bahleda R, Dienstmann R, Infante JR, Mita A, Italiano A, et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2015;33(30):3401–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Dienstmann R, Rodon J, Prat A, Perez-Garcia J, Adamo B, Felip E, et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann Oncol. 2014;25(3):552–63.CrossRefPubMedGoogle Scholar
  72. 72.
    Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282(37):26687–95.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Jovcheva E, Ogata S, VenVan De Ven K, Paulussen C, Van de Weyer I, Wolf H et al. Identification of alternative mechanisms of resistance to FGFR inhibitor treatment in FGFR1-amplified large cell compared to FGFR1-amplified small cell lung cancer models. Cancer Res. 2014;74 (suppl 19) (abstr LB-329).Google Scholar
  74. 74.
    Tiseo M, Gelsomino F, Alfieri R, Cavazzoni A, Bozzetti C, De Giorgi AM, et al. FGFR as potential target in the treatment of squamous non small cell lung cancer. Cancer Treat Rev. 2015;41(6):527–39.CrossRefPubMedGoogle Scholar
  75. 75.
    Brooks AN, Kilgour E, Smith PD. Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res. 2012;18(7):1855–62.CrossRefPubMedGoogle Scholar
  76. 76.
    Mross K, Stefanic M, Gmehling D, Frost A, Baas F, Unger C, et al. Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors. Clin Cancer Res. 2010;16(1):311–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Okamoto I, Kaneda H, Satoh T, Okamoto W, Miyazaki M, Morinaga R, et al. Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors. Mol Cancer Ther. 2010;9(10):2825–33.CrossRefPubMedGoogle Scholar
  78. 78.
    Ellis PM, Kaiser R, Zhao Y, Stopfer P, Gyorffy S, Hanna N. Phase I open-label study of continuous treatment with BIBF 1120, a triple angiokinase inhibitor, and pemetrexed in pretreated non-small cell lung cancer patients. Clin Cancer Res. 2010;16(10):2881–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Daga H, Takeda K, Okada H, Miyazaki M, Ueda S, Kaneda H, et al. Phase I study of nintedanib in combination with pemetrexed as second-line treatment of Japanese patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2015;76(6):1225–33.CrossRefPubMedGoogle Scholar
  80. 80.
    Doebele RC, Conkling P, Traynor AM, Otterson GA, Zhao Y, Wind S, et al. A phase I, open-label dose-escalation study of continuous treatment with BIBF 1120 in combination with paclitaxel and carboplatin as first-line treatment in patients with advanced non-small-cell lung cancer. Ann Oncol. 2012;23(8):2094–102.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Scheffler M, Nogova L, Gardizi M, et al. BARIS: A phase I trial to evaluate the safety and tolerability of combined BIBF 1120 and RAD001 in solid tumors and to determine the maximum tolerated dose (MTD) of the combination. J Clin Oncol. 2012;30 (suppl) (abstr TPS3115).Google Scholar
  82. 82.
    Reck M, Kaiser R, Eschbach C, Stefanic M, Love J, Gatzemeier U, et al. A phase II double-blind study to investigate efficacy and safety of two doses of the triple angiokinase inhibitor BIBF 1120 in patients with relapsed advanced non-small-cell lung cancer. Ann Oncol. 2011;22(6):1374–81.CrossRefPubMedGoogle Scholar
  83. 83.
    Reck M, Kaiser R, Mellemgaard A, Douillard JY, Orlov S, Krzakowski M, et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014;15(2):143–55.CrossRefPubMedGoogle Scholar
  84. 84.
    Hanna NH, Kaiser R, Sullivan RN, Aren OR, Ahn MJ, Tiangco B, et al. Nintedanib plus pemetrexed versus placebo plus pemetrexed in patients with relapsed or refractory, advanced non-small cell lung cancer (LUME-lung 2): a randomized, double-blind, phase III trial. Lung Cancer. 2016;102:65–73.CrossRefPubMedGoogle Scholar
  85. 85.
    Drevs J, Siegert P, Medinger M, Mross K, Strecker R, Zirrgiebel U, et al. Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signaling inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2007;25(21):3045–54.CrossRefPubMedGoogle Scholar
  86. 86.
    van Herpen CM, Lassen U, Desar IM, Brown KH, Marotti M, de Jonge MJ. Pharmacokinetics and tolerability of cediranib, a potent VEGF signalling inhibitor, in cancer patients with hepatic impairment. Anti-Cancer Drugs. 2013;24(2):204–11.CrossRefPubMedGoogle Scholar
  87. 87.
    Lorusso P, Shields AF, Gadgeel S, Vaishampayan U, Guthrie T, Puchalski T, et al. Cediranib in combination with various anticancer regimens: results of a phase I multi-cohort study. Investig New Drugs. 2011;29(6):1395–405.CrossRefGoogle Scholar
  88. 88.
    Laurie SA, Gauthier I, Arnold A, Shepherd FA, Ellis PM, Chen E, et al. Phase I and pharmacokinetic study of daily oral AZD2171, an inhibitor of vascular endothelial growth factor tyrosine kinases, in combination with carboplatin and paclitaxel in patients with advanced non-small-cell lung cancer: the National Cancer Institute of Canada clinical trials group. J Clin Oncol. 2008;26(11):1871–8.CrossRefPubMedGoogle Scholar
  89. 89.
    Goss GD, Arnold A, Shepherd FA, Dediu M, Ciuleanu TE, Fenton D, et al. Randomized, double-blind trial of carboplatin and paclitaxel with either daily oral cediranib or placebo in advanced non-small-cell lung cancer: NCIC clinical trials group BR24 study. J Clin Oncol. 2010;28(1):49–55.CrossRefPubMedGoogle Scholar
  90. 90.
    Laurie SA, Solomon BJ, Seymour L, Ellis PM, Goss GD, Shepherd FA, et al. Randomised, double-blind trial of carboplatin and paclitaxel with daily oral cediranib or placebo in patients with advanced non-small cell lung cancer: NCIC clinical trials group study BR29. Eur J Cancer. 2014;50(4):706–12.CrossRefPubMedGoogle Scholar
  91. 91.
    Dy GK, Mandrekar SJ, Nelson GD, Meyers JP, Adjei AA, Ross HJ, et al. A randomized phase II study of gemcitabine and carboplatin with or without cediranib as first-line therapy in advanced non-small-cell lung cancer: north central cancer treatment group study N0528. J Thorac Oncol. 2013;8(1):79–88.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Zhou Y, Chen Y, Tong L, Xie H, Wen W, Zhang J, et al. AL3810, a multi-tyrosine kinase inhibitor, exhibits potent anti-angiogenic and anti-tumour activity via targeting VEGFR, FGFR and PDGFR. J Cell Mol Med. 2012;16(10):2321–30.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Colella G, Damia G, D’Incalci M, et al. E-3810 antitumor activity in human xenografts expressing different levels of FGF receptor 1. Cancer Res. 2011;71 (Suppl. 8) (abstr 595).Google Scholar
  94. 94.
    Soria JC, DeBraud F, Bahleda R, Adamo B, Andre F, Dienstmann R, et al. Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Ann Oncol. 2014;25(11):2244–51.CrossRefPubMedGoogle Scholar
  95. 95.
    Hurwitz HI, Dowlati A, Saini S, Savage S, Suttle AB, Gibson DM, et al. Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res. 2009;15(12):4220–7.CrossRefPubMedGoogle Scholar
  96. 96.
    Burris HA 3rd, Dowlati A, Moss RA, Infante JR, Jones SF, Spigel DR, et al. Phase I study of pazopanib in combination with paclitaxel and carboplatin given every 21 days in patients with advanced solid tumors. Mol Cancer Ther. 2012;11(8):1820–8.CrossRefPubMedGoogle Scholar
  97. 97.
    Kendra KL, Plummer R, Salgia R, O’Brien ME, Paul EM, Suttle AB, et al. A multicenter phase I study of pazopanib in combination with paclitaxel in first-line treatment of patients with advanced solid tumors. Mol Cancer Ther. 2015;14(2):461–9.CrossRefPubMedGoogle Scholar
  98. 98.
    Thomas S, Ho TA, Jackson K, et al. A phase II study of pazopanib (GW786034) in patients with stage IV non-small cell lung cancer that have failed at least two prior chemotherapy regimens. J Clin Oncol. 2014; 32 (suppl) (abstr e19008).Google Scholar
  99. 99.
    Altorki N, Lane ME, Bauer T, Lee PC, Guarino MJ, Pass H, et al. Phase II proof-of-concept study of pazopanib monotherapy in treatment-naive patients with stage I/II resectable non-small-cell lung cancer. J Clin Oncol. 2010;28(19):3131–7.CrossRefPubMedGoogle Scholar
  100. 100.
    Besse B, Mazières J, Ribassin-Majed L, et al. Pazopanib (P) or placebo in completely resected stage I NSCLC patients: Survival results of the phase II trial IFCT-0703. J Clin Oncol. 2015;33 (suppl) (abstr 7510).Google Scholar
  101. 101.
    O’Brien ME, Gaafar R, Hasan B, Menis J, Cufer T, Popat S, et al. Maintenance pazopanib versus placebo in non-small cell lung cancer patients non-progressive after first line chemotherapy: a double blind randomised phase III study of the lung cancer group, EORTC 08092 (EudraCT: 2010-018566-23, NCT01208064). Eur J Cancer. 2015;51(12):1511–28.CrossRefPubMedGoogle Scholar
  102. 102.
    Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381(9863):303–12.CrossRefPubMedGoogle Scholar
  103. 103.
    Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381(9863):295–302.CrossRefPubMedGoogle Scholar
  104. 104.
    Finn R, Blumenschein G, Tolcher A, et al. Continuous-dose regorafenib (REG) in hepatocellular carcinoma (HCC): Phase I safety and pharmacokinetic (PK) study. J Clin Oncol. 2013;31 (suppl 4) (abstr 300).Google Scholar
  105. 105.
    Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008;14(17):5459–65.CrossRefPubMedGoogle Scholar
  106. 106.
    Boss DS, Glen H, Beijnen JH, Keesen M, Morrison R, Tait B, et al. A phase I study of E7080, a multitargeted tyrosine kinase inhibitor, in patients with advanced solid tumours. Br J Cancer. 2012;106(10):1598–604.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. NEJM. 2015;372(7):621–30.CrossRefPubMedGoogle Scholar
  108. 108.
    Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, Eisen T, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015;16(15):1473–82.CrossRefPubMedGoogle Scholar
  109. 109.
    Nishio M, Horai T, Horiike A, Nokihara H, Yamamoto N, Takahashi T, et al. Phase 1 study of lenvatinib combined with carboplatin and paclitaxel in patients with non-small-cell lung cancer. Br J Cancer. 2013;109(3):538–44.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Havel L, Lee J, Lee K, et al. E7080 (lenvatinib) in addition to best supportive care (BSC) versus BSC alone in third-line or greater nonsquamous, non-small cell lung cancer (NSCLC). J Clin Oncol. 2014;32 (suppl 5) ( abstr 8043).Google Scholar
  111. 111.
    Huynh H, Ngo VC, Fargnoli J, Ayers M, Soo KC, Koong HN, et al. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin Cancer Res. 2008;14(19):6146–53.CrossRefPubMedGoogle Scholar
  112. 112.
    Mekhail T, Masson E, Fischer BS, Gong J, Iyer R, Gan J, et al. Metabolism, excretion, and pharmacokinetics of oral brivanib in patients with advanced or metastatic solid tumors. Drug Metab Dispos. 2010;38(11):1962–6.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Jonker DJ, Rosen LS, Sawyer MB, de Braud F, Wilding G, Sweeney CJ, et al. A phase I study to determine the safety, pharmacokinetics and pharmacodynamics of a dual VEGFR and FGFR inhibitor, brivanib, in patients with advanced or metastatic solid tumors. Ann Oncol. 2011;22(6):1413–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MedicineIndiana University School of MedicineIndianapolisUSA

Personalised recommendations