Skip to main content
Log in

Predictive Markers of Response to Everolimus and Sunitinib in Neuroendocrine Tumors

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Neuroendocrine tumors (NETs) represent a large and heterogeneous group of malignancies with various biological and clinical characteristics, depending on the site of origin and the grade of tumor proliferation. In NETs, as in other cancer types, molecularly targeted therapies have radically changed the therapeutic landscape. Recently two targeted agents, the mammalian target of rapamycin inhibitor everolimus and the tyrosine kinase inhibitor sunitinib, have both demonstrated significantly prolonged progression free survival in patients with advanced pancreatic NETs. Despite these important therapeutic developments, there are still significant limitations to the use of these agents due to the lack of accurate biomarkers for predicting tumor response and efficacy of therapy. In this review, we provide an overview of the current clinical data for the evaluation of predictive factors of response to/efficacy of everolimus and sunitinib in advanced pancreatic NETs. Surrogate indicators discussed include circulating and tissue markers, as well as non-invasive imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van der Zwan JM, Trama A, Otter R, et al. Rare neuroendocrine tumours: results of the surveillance of rare cancers in Europe project. Eur J Cancer. 2013;49:2565–78.

    Article  PubMed  Google Scholar 

  2. Bosman FT, Carneiro F, Hruban RH et al. WHO classification of tumours of the digestive system. 4th ed. World Health Organization; 2010.

  3. Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raymond E, Hammel P, Dreyer C. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:501–13.

    Article  CAS  PubMed  Google Scholar 

  5. Yao JC, Fazio N, Singh S, et al. RAD001 in advanced neuroendocrine Tumours, fourth trial (RADIANT-4) study group. Lancet. 2016;387:968–77.

    Article  CAS  PubMed  Google Scholar 

  6. Yao JC, Pavel M, Phan AT, et al. Chromogranin a and neuron-specific enolase as prognostic markers in patients with advanced pNET treated with Everolimus. J Clin Endocrinol Metab. 2011;96:3741–9.

    Article  CAS  PubMed  Google Scholar 

  7. Baudin E, Wolin E, Castellano D. Correlation of PFS with early response of chromogranin a and 5-hydroxyindoleacetic acid levels in patients with advanced neuroendocrine tumors: phase III RADIANT-2 study results. Eur J Cancer. 2011;47(Suppl 1):S460.

    Article  Google Scholar 

  8. Yao JC, Shah M, Panneerselvam A, et al. The VEGF pathway in patients with pancreatic neuroendocrine tumors: efficacy of everolimus by baseline marker level, and prognostic and predictive effect analyses from RADIANT-3. Ann Oncol. 2012;23(Suppl 9):376.

    Article  Google Scholar 

  9. Bellister SA, Zhou Y, Sceusi E, et al. Prediction of prognosis in patients treated with everolimus for extrapancreatic neuroendocrine tumors by a single nucleotide polymorphism in PHLPP2. J Clin Oncol. 2013;31(Suppl 4):163.

    Article  Google Scholar 

  10. Serra S, Zheng L, Hassan M, et al. The FGFR4-G388R single-nucleotide polymorphism alters pancreatic neuroendocrine tumor progression and response to mTOR inhibition therapy. Cancer Res. 2012;72:5683–91.

    Article  CAS  PubMed  Google Scholar 

  11. Meric-Bernstam F, Akcakanat A, Chen H, et al. PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitor. Clin Cancer Res. 2012;18:1777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spada F, Fazio N, Capurso G, et al. PI3K-AKT-mTOR pathway disregulation and its correlation with clinical outcome in patients with advanced neuroendocrine tumors treated with everolimus. Pancreas. 2014;43:493.

    Google Scholar 

  13. Gagliano T, Bellio M, Gentilin E, et al. mTOR, p70S6K, AKT, and ERK1/2 levels predict sensitivity to mTOR and PI3K/mTOR inhibitors in human bronchial carcinoids. Endocr Relat Cancer. 2013;20:463–75.

    Article  CAS  PubMed  Google Scholar 

  14. Casanovas O, Capdevila J, Barriuso J. Potential role of mTOR phosphorylation status as a negative predictor to everolimus plus octreotide in NETs. J Clin Oncol. 2014;32(Suppl 3):484.

    Article  Google Scholar 

  15. Cros J, Moati E, Raffenne J, et al. Gly388Arg FGFR4 polymorphism is not predictive of Everolimus efficacy in well-differentiated digestive neuroendocrine tumors. Neuroendocrinology. 2015;103:495–9.

    Article  PubMed  Google Scholar 

  16. Benslama N, Bollard J, Vercherat C, et al. Prediction of response to everolimus in neuroendocrine tumors: evaluation of clinical, biological and histological factors. Investig New Drugs. 2016;34:654–62.

    Article  CAS  Google Scholar 

  17. Falletta S, Partelli S. Rubini et al. mTOR inhibitors response and mTOR pathway in pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016;23:883–91.

    Article  PubMed  Google Scholar 

  18. van Asselt SJ, Oosting SF, Brouwers AH, et al. Everolimus reduces (89)Zr bevacizumab tumor uptake in patients with neuroendocrine tumors. J Nucl Med. 2014;55:1087–92.

    Article  PubMed  Google Scholar 

  19. Yao JC, Phan AT, Hess K, et al. Perfusion computed tomography as functional biomarker in randomized run-in study of bevacizumab and everolimus in well-differentiated neuroendocrine tumors. Pancreas. 2015;44:190–7.

    Article  CAS  PubMed  Google Scholar 

  20. Bello CL, DePrimo SE, Friece C, et al. Analysis of circulating biomarkers of sunitinib malate in patients with unresectable neuroendocrine tumors (NET): VEGF, IL-8, and soluble VEGF receptors 2 and 3. J Clin Oncol. 2006;24(Suppl 18):4045.

    Google Scholar 

  21. Zurita AJ, Khajavi M, Wu HK, et al. Circulating cytokines and monocyte subpopulations as biomarkers of outcome and biological activity in sunitinib-treated patients with advanced neuroendocrine tumours. Br J Cancer. 2015;112:1199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dreyer C, Couvelard A, Walter T, et al. Clinical and biomarker evaluations of sunitinib in patients (pts) with advanced well-differentiated grade 3 (G3) and poorly differentiated neuroendocrine neoplasms (PD-NEN). J Clin Oncol. 2016;34(Suppl 4):274.

    Article  Google Scholar 

  23. Faivre S, Ronot M, Dreyer C, et al. Imaging response in neuroendocrine tumors treated with targeted therapies: the experience of sunitinib. Target Oncol. 2012;7:127–33.

    Article  PubMed  Google Scholar 

  24. Oberg K, Krenning E, Sundin A, et al. A Delphic consensus assessment: imaging and biomarkers in gastroenteropancreatic neuroendocrine tumor disease management. Endocr Connect. 2016;5:174–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yao JC, Lombard-Bohas C, Baudin E, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. 2010;28:69–76.

    Article  CAS  PubMed  Google Scholar 

  27. Yao JC. Neuroendocrine tumors molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pract Res Clin Endocrinol Metab. 2007;21:163–72.

    Article  CAS  PubMed  Google Scholar 

  28. Missiaglia E, Dalai I, Barbi S, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-Mtor pathway. J Clin Oncol. 2010;28:245–55.

    Article  CAS  PubMed  Google Scholar 

  29. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22.

    Article  CAS  PubMed  Google Scholar 

  30. Abraham RT, Eng CH. Mammalian target of rapamycin as a therapeutic target in oncology. Expert Opin Ther Targets. 2008;12:209–22.

    Article  CAS  PubMed  Google Scholar 

  31. Zatelli MC, Fanciulli G, Malandrino P, et al. Predictive factors of response to mTOR inhibitors in neuroendocrine tumours. Endocr Relat Cancer. 2016;23:173–83.

    Article  Google Scholar 

  32. Fazio N. Neuroendocrine tumors resistant to mammalian target of rapamycin inhibitors: a difficult conversion from biology to the clinic. World J Clin Oncol. 2015;6:194–7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Modlin IM, Gustafsson BI, Moss SF, et al. Chromogranin A-biological function and clinical utility in neuroendocrine tumor disease. Ann Surg Oncol. 2010;17:2427–43.

    Article  PubMed  Google Scholar 

  34. Qian ZR, Ter-Minassian M, Chan JA, et al. Prognostic significance of MTOR pathway component expression in neuroendocrine tumors. J Clin Oncol. 2013;31:3418–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Capurso G, Archibugi L, Delle FG. Molecular pathogenesis and targeted therapy of sporadic pancreatic neuroendocrine tumors. J Hepatobiliary Pancreat Sci. 2015;22:594–601.

    Article  PubMed  Google Scholar 

  36. Villaume K, Blanc M, Gouysse G, et al. VEGF secretion by neuroendocrine tumor cells is inhibited by octreotide and by inhibitors of the PI3K/AKT/mTOR pathway. Neuroendocrinology. 2010;91:268–78.

    Article  CAS  PubMed  Google Scholar 

  37. Yao JC, Phan A, Hoff PM, et al. Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol. 2008;26:1316–23.

    Article  CAS  PubMed  Google Scholar 

  38. Kulke MH, Chan JA, Meyerhardt JA, et al. A prospective phase II study of 2-methoxyestradiol administered in combination with bevacizumab in patients with metastatic carcinoid tumors. Cancer Chemother Pharmacol. 2011;68:293–300.

    Article  CAS  PubMed  Google Scholar 

  39. Chan JA, Stuart K, Earle CC, et al. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J Clin Oncol. 2012;30:2963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ng CS, Charnsangavej C, Wei W, et al. Perfusion CT findings in patients with metastatic carcinoid tumors undergoing bevacizumab and interferon therapy. AJR Am J Roentgenol. 2007;196:569–76.

    Article  Google Scholar 

  41. Faivre S, Djelloul S, Raymond E. New paradigms in anticancer therapy: targeting multiple signalling pathways with kinase inhibitors. Semin Oncol. 2006;33:407–20.

    Article  CAS  PubMed  Google Scholar 

  42. Vinik AI, Raymond E. Pancreatic neuroendocrine tumors: approach to treatment with focus on sunitinib. Therap Adv Gastroenterol. 2013;5:396–411.

    Article  Google Scholar 

  43. Raymond E, Kulke M, Qin S, et al. The efficacy and safety of sunitinib in patients with advanced well-differentiated pancreatic neuroendocrine tumors. Pancreas. 2016;46(Suppl 3):427–51.

    Google Scholar 

  44. DePrimo SE, Bello C. Surrogate biomarkers in evaluating response to anti-angiogenic agents: focus on sunitinib. Ann Oncol. 2007;18:11–9.

    Article  Google Scholar 

  45. Gerger A, LaBonte M, Lenz HJ. Molecular predictors of response to antiangiogenesis therapies. Cancer J. 2011;17:134–41.

    Article  CAS  PubMed  Google Scholar 

  46. Norden-Zfoni A, Desai J, Manola J, et al. Blood-based biomarkers of SU11248 activity and clinical outcome in patients with metastatic imatinib-resistant gastrointestinal stromal tumor. Clin Cancer Res. 2007;13:2643–50.

    Article  CAS  PubMed  Google Scholar 

  47. DePrimo SE, Bello CL, Smeraglia J, et al. Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins. J Transl Med. 2007;5:32.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grande E, Casanovas O, Earl J, et al. sVEGFR2 and circulating tumor cells to predict for the efficacy of pazopanib in neuroendocrine tumors (NETs): the PAZONET subgroup analysis. J Clin Oncol. 2013;31(Suppl 15):4140.

    Google Scholar 

  49. Takahashi Y, Akishima-Fukasawa Y, Kobayashi N, et al. Prognostic value of tumor architecture, tumor-associated vascular characteristics, and expression of angiogenic molecules in pancreatic endocrine tumors. Clin Cancer Res. 2007;13:187–96.

    Article  CAS  PubMed  Google Scholar 

  50. You D, Song SH, Cho YM, et al. Predictive role of tissue-based molecular markers in patients treated with sunitinib for metastatic renal cell carcinoma. World J Urol. 2015;33:111–8.

    Article  CAS  PubMed  Google Scholar 

  51. Choi H, Charnsangavej C, Faria SC, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25:1753–9.

    Article  PubMed  Google Scholar 

  52. Vercellino L, Bousquet G, Baillet G, et al. 18F-FDG PET/CT imaging for an early assessment of response to sunitinib in metastatic renal carcinoma: preliminary study. Cancer Biother Radiopharm. 2009;24:137–44.

    Article  CAS  PubMed  Google Scholar 

  53. Mordente A, Meucci E, Martorana G, E et al. Cancer biomarkers discovery and validation: state of the art, problems and future perspectives. Adv Exp Med Biol. 2015;867:9–26.

  54. Diamandis EP. The failure of protein cancer biomarkers to reach the clinic: why, and what can be done to address the problem? BMC Med. 2012;10:87.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Nicola Fazio.

Ethics declarations

Funding

None.

Conflicts of Interest

Nicola Fazio has received consulting fees or honorarium for oral presentations from Novartis, Ipsen and Pfizer. All other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, D., Spada, F., Lambrescu, I. et al. Predictive Markers of Response to Everolimus and Sunitinib in Neuroendocrine Tumors. Targ Oncol 12, 611–622 (2017). https://doi.org/10.1007/s11523-017-0506-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-017-0506-5

Navigation