Skip to main content

Advertisement

Log in

Novel Therapies for Acute Myeloid Leukemia: Are We Finally Breaking the Deadlock?

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) is one of the best studied malignancies, and significant progress has been made in understanding the clinical implications of its disease biology. Unfortunately, drug development has not kept pace, as the ‘7+3’ induction regimen remains the standard of care for patients fit for intensive therapy 40 years after its first use. Temporal improvements in overall survival were mostly confined to younger patients and driven by improvements in supportive care and use of hematopoietic stem cell transplantation. Multiple forms of novel therapy are currently in clinical trials and are attempting to bring bench discoveries to the bedside to benefit patients. These novel therapies include improved chemotherapeutic agents, targeted molecular inhibitors, cell cycle regulators, pro-apoptotic agents, epigenetic modifiers, and metabolic therapies. Immunotherapies in the form of vaccines; naked, conjugated and bispecific monoclonal antibodies; cell-based therapy; and immune checkpoint inhibitors are also being evaluated in an effort to replicate the success seen in other malignancies. Herein, we review the scientific basis of these novel therapeutic approaches, summarize the currently available evidence, and look into the future of AML therapy by highlighting key clinical studies and the challenges the field continues to face.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dohner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373:1136–52.

    Article  PubMed  CAS  Google Scholar 

  2. Podoltsev NA, Stahl M, Zeidan AM, et al. Selecting initial treatment of acute myeloid leukaemia in older adults. Blood Rev. 2017;31:43–62.

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  PubMed  Google Scholar 

  4. Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115:453–74.

    Article  PubMed  CAS  Google Scholar 

  5. Forman SJ, Rowe JM. The myth of the second remission of acute leukemia in the adult. Blood. 2013;121:1077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Breems DA, Van Putten WL, Huijgens PC, et al. Prognostic index for adult patients with acute myeloid leukemia in first relapse. J Clin Oncol. 2005;23:1969–78.

    Article  PubMed  Google Scholar 

  7. Patel JP, Gonen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366:1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ding L, Ley TJ, Larson DE, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Viny AD, Levine RL. Roads diverge--a Robert frost view of leukemia development. N Engl J Med. 2016;374:2282–4.

    Article  PubMed  Google Scholar 

  12. Kadia TM, Ravandi F, Cortes J, et al. New drugs in acute myeloid leukemia. Ann Oncol. 2016;27:770–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yates JW, Wallace HJ Jr, Ellison RR, et al. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother Rep. 1973;57:485–8.

    CAS  PubMed  Google Scholar 

  14. Rowe JM, Lowenberg B. Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug. Blood. 2013;121:4838–41.

    Article  CAS  PubMed  Google Scholar 

  15. Stein EM, Tallman MS. Emerging therapeutic drugs for AML. Blood. 2016;127:71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Willemze R, Suciu S, Meloni G, et al. High-dose cytarabine in induction treatment improves the outcome of adult patients younger than age 46 years with acute myeloid leukemia: results of the EORTC-GIMEMA AML-12 trial. J Clin Oncol. 2014;32:219–28.

    Article  CAS  PubMed  Google Scholar 

  17. Lowenberg B, Pabst T, Vellenga E, et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364:1027–36.

    Article  PubMed  Google Scholar 

  18. Lowenberg B. Sense and nonsense of high-dose cytarabine for acute myeloid leukemia. Blood. 2013;121:26–8.

    Article  PubMed  Google Scholar 

  19. Fernandez HF, Sun Z, Yao X, et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med. 2009;361:1249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lowenberg B, Ossenkoppele GJ, van Putten W, et al. High-dose daunorubicin in older patients with acute myeloid leukemia. N Engl J Med. 2009;361:1235–48.

    Article  PubMed  Google Scholar 

  21. Gardin C, Chevret S, Pautas C, et al. Superior long-term outcome with idarubicin compared with high-dose daunorubicin in patients with acute myeloid leukemia age 50 years and older. J Clin Oncol. 2013;31:321–7.

    Article  CAS  PubMed  Google Scholar 

  22. Mandelli F, Vignetti M, Suciu S, et al. Daunorubicin versus mitoxantrone versus idarubicin as induction and consolidation chemotherapy for adults with acute myeloid leukemia: the EORTC and GIMEMA groups study AML-10. J Clin Oncol. 2009;27:5397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holowiecki J, Grosicki S, Giebel S, et al. Cladribine, but not fludarabine, added to daunorubicin and cytarabine during induction prolongs survival of patients with acute myeloid leukemia: a multicenter, randomized phase III study. J Clin Oncol. 2012;30:2441–8.

    Article  CAS  PubMed  Google Scholar 

  24. Libura M, Giebel S, Piatkowska-Jakubas B, et al. Cladribine added to daunorubicin-cytarabine induction prolongs survival of FLT3-ITD+ normal karyotype AML patients. Blood. 2016;127:360–2.

    Article  CAS  PubMed  Google Scholar 

  25. Feldman EJ, Lancet JE, Kolitz JE, et al. First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J Clin Oncol. 2011;29:979–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cortes JE, Goldberg SL, Feldman EJ, et al. Phase II, multicenter, randomized trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer. 2015;121:234–42.

    Article  CAS  PubMed  Google Scholar 

  27. Lancet JE, Cortes JE, Hogge DE, et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood. 2014;123:3239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lancet JE UG, Cortes JE, et al. Final results of a phase III randomized trial of cpx-351 versus 7+3 in older patients with newly diagnosed high risk (secondary) AML. J Clin Oncol. 2016;34 (suppl 15):7000.

  29. Lancet JE, Hoering A, Uy GL, et al. Survival following allogeneic hematopoietic cell transplantation in older high-risk acute myeloid leukemia patients initially treated with CPX-351 liposome injection versus standard cytarabine and daunorubicin: subgroup analysis of a large phase III trial. Blood. 2016;128:906.

  30. Hawtin RE, Stockett DE, Byl JA, et al. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS One. 2010;5:e10186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mjos KD, Cawthray JF, Jamieson G, et al. Iron(III)-binding of the anticancer agents doxorubicin and vosaroxin. Dalton Trans. 2015;44:2348–58.

    Article  CAS  PubMed  Google Scholar 

  32. Lancet JE, Roboz GJ, Cripe LD, et al. A phase 1b/2 study of vosaroxin in combination with cytarabine in patients with relapsed or refractory acute myeloid leukemia. Haematologica. 2015;100:231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stuart RK, Cripe LD, Maris MB, et al. REVEAL-1, a phase 2 dose regimen optimization study of vosaroxin in older poor-risk patients with previously untreated acute myeloid leukaemia. Br J Haematol. 2015;168:796–805.

    Article  CAS  PubMed  Google Scholar 

  34. Ravandi F, Ritchie EK, Sayar H, et al. Vosaroxin plus cytarabine versus placebo plus cytarabine in patients with first relapsed or refractory acute myeloid leukaemia (VALOR): a randomised, controlled, double-blind, multinational, phase 3 study. Lancet Oncol. 2015;16:1025–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kantarjian H, Garcia-Manero G, O’Brien S, et al. Phase I clinical and pharmacokinetic study of oral sapacitabine in patients with acute leukemia and myelodysplastic syndrome. J Clin Oncol. 2010;28:285–91.

    Article  CAS  PubMed  Google Scholar 

  36. Kantarjian H, Faderl S, Garcia-Manero G, et al. Oral sapacitabine for the treatment of acute myeloid leukaemia in elderly patients: a randomised phase 2 study. Lancet Oncol. 2012;13:1096–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burnett AK, Russell N, Hills RK, et al. A randomised comparison of the novel nucleoside analogue sapacitabine with low-dose cytarabine in older patients with acute myeloid leukaemia. Leukemia. 2015;29:1312–9.

    Article  CAS  PubMed  Google Scholar 

  38. Sapacitabine fails to meet primary endpoint in clinical trial of older AML patients. ASH Clinical News; 2017.

  39. Stirewalt DL, Kopecky KJ, Meshinchi S, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood. 2001;97:3589–95.

    Article  CAS  PubMed  Google Scholar 

  40. Bacher U, Haferlach T, Schoch C, et al. Implications of NRAS mutations in AML: a study of 2502 patients. Blood. 2006;107:3847–53.

    Article  CAS  PubMed  Google Scholar 

  41. Marcucci G, Haferlach T, Dohner H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol. 2011;29:475–86.

    Article  CAS  PubMed  Google Scholar 

  42. Kiyoi H, Naoe T, Yokota S, et al. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia study Group of the Ministry of health and welfare (Kohseisho). Leukemia. 1997;11:1447–52.

    Article  CAS  PubMed  Google Scholar 

  43. Kiyoi H, Ohno R, Ueda R, et al. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene. 2002;21:2555–63.

    Article  CAS  PubMed  Google Scholar 

  44. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99:4326–35.

    Article  CAS  PubMed  Google Scholar 

  45. Schnittger S, Bacher U, Haferlach C, et al. Diversity of the juxtamembrane and TKD1 mutations (exons 13-15) in the FLT3 gene with regards to mutant load, sequence, length, localization, and correlation with biological data. Genes Chromosom Cancer. 2012;51:910–24.

    Article  CAS  PubMed  Google Scholar 

  46. Abu-Duhier FM, Goodeve AC, Wilson GA, et al. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol. 2001;113:983–8.

    Article  CAS  PubMed  Google Scholar 

  47. O’Farrell AM, Foran JM, Fiedler W, et al. An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res. 2003;9:5465–76.

    PubMed  Google Scholar 

  48. Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9:327–37.

    CAS  PubMed  Google Scholar 

  49. Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004;103:3669–76.

    Article  CAS  PubMed  Google Scholar 

  50. Pratz KW, Cortes J, Roboz GJ, et al. A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood. 2009;113:3938–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Metzelder SK, Schroeder T, Finck A, et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia. 2012;26:2353–9.

    Article  CAS  PubMed  Google Scholar 

  52. Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105:54–60.

    Article  CAS  PubMed  Google Scholar 

  53. Fiedler W, Serve H, Dohner H, et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood. 2005;105:986–93.

    Article  CAS  PubMed  Google Scholar 

  54. Knapper S, Russell N, Gilkes A, et al. A randomised assessment of adding the kinase inhibitor lestaurtinib to 1st-line chemotherapy for FLT3-mutated AML. Blood. 2017;129:1143–54.

  55. Levis M, Ravandi F, Wang ES, et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood. 2011;117:3294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Knapper S, Burnett AK, Littlewood T, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood. 2006;108:3262–70.

    Article  CAS  PubMed  Google Scholar 

  57. Rollig C, Serve H, Huttmann A, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16:1691–9.

    Article  PubMed  CAS  Google Scholar 

  58. Serve H, Krug U, Wagner R, et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J Clin Oncol. 2013;31:3110–8.

    Article  CAS  PubMed  Google Scholar 

  59. Ravandi F, Alattar ML, Grunwald MR, et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood. 2013;121:4655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stone RM, Mandrekar S, Sanford BL, et al. The multi-kinase inhibitor Midostaurin (M) prolongs survival compared with placebo (P) in combination with Daunorubicin (D)/Cytarabine (C) induction (ind), high-dose C consolidation (consol), and as maintenance (maint) therapy in newly diagnosed acute myeloid leukemia (AML) patients (pts) age 18-60 with FLT3 mutations (muts): an international prospective randomized (rand) P-controlled double-blind trial (CALGB 10603/RATIFY [alliance]). Blood. 2015;126:6.

    Article  Google Scholar 

  61. Cortes JE, Kantarjian H, Foran JM, et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol. 2013;31:3681–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cortes JE, Perl AE, Dombret H, et al. Final results of a phase 2 open-label, monotherapy efficacy and safety study of Quizartinib (AC220) in patients ≥ 60 years of age with FLT3 ITD positive or negative relapsed/refractory acute myeloid leukemia. Blood. 2012;120:48.

    Google Scholar 

  63. Smith CC, Wang Q, Chin CS, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485:260–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moore AS, Faisal A, Gonzalez de Castro D, et al. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns. Leukemia. 2012;26:1462–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Smith CC, Perl AE, Lasater E, et al. PLX3397 is an investigational selective FLT3 inhibitor that retains activity against the clinically-relevant FLT3-ITD/F691L “gatekeeper” mutation in vitro. Blood. 2011;118:764.

    Google Scholar 

  66. Lin K, Lasater E, Stewart W, et al. Preclinical and clinical resistance mechanisms to the investigational selective FLT3 inhibitor PLX3397 in FLT3-ITD+ acute myeloid leukemia (AML). Blood. 2013;122:3938.

    Google Scholar 

  67. Galanis A, Ma H, Rajkhowa T, et al. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood. 2014;123:94–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Randhawa JK, Kantarjian HM, Borthakur G, et al. Results of a phase II study of Crenolanib in relapsed/refractory acute myeloid leukemia patients (pts) with activating FLT3 mutations. Blood. 2014;124:389.

    Google Scholar 

  69. Wang ES, Stone RM, Tallman MS, et al. Crenolanib, a type I FLT3 TKI, can be safely combined with Cytarabine and anthracycline induction chemotherapy and results in high response rates in patients with newly diagnosed FLT3 mutant acute myeloid leukemia (AML). Blood. 2016;128:1071.

    Google Scholar 

  70. Ohanian M, Kantarjian HM, Borthakur G, et al. Efficacy of a type I FLT3 inhibitor, Crenolanib, with Idarubicin and high-dose Ara-C in multiply relapsed/refractory FLT3+ AML. Blood. 2016;128:2744.

    Article  CAS  Google Scholar 

  71. Perl AE, Altman JK, Cortes JE, et al. Final results of the Chrysalis trial: a first-in-human phase 1/2 dose-escalation, dose-expansion study of Gilteritinib (ASP2215) in patients with relapsed/refractory acute myeloid leukemia (R/R AML). Blood. 2016;128:1069.

    Google Scholar 

  72. Ariad suspends ponatinib sales. Cancer Discov. 2014;4:6–7.

  73. Smith CC, Lasater EA, Zhu X, et al. Activity of ponatinib against clinically-relevant AC220-resistant kinase domain mutants of FLT3-ITD. Blood. 2013;121:3165–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zirm E, Spies-Weisshart B, Heidel F, et al. Ponatinib may overcome resistance of FLT3-ITD harbouring additional point mutations, notably the previously refractory F691I mutation. Br J Haematol. 2012;157:483–92.

    Article  CAS  PubMed  Google Scholar 

  75. Marubayashi S, Park A, Noubade R, et al. FLX925 is a rationally designed FLT3, CDK4/6 inhibitor with a desirable resistance profile. Blood. 2016;128:2323.

    Google Scholar 

  76. Zeng Z, Ly C, Mak D, et al. AMG925, a dual FLT3-CDK4/6 inhibitor, disrupts survival signaling and triggers apoptosis in AML progenitor/stem cells. Blood. 2016;128:3938.

    Google Scholar 

  77. Sexauer A, Perl A, Yang X, et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood. 2012;120:4205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lens SM, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer. 2010;10:825–41.

    Article  CAS  PubMed  Google Scholar 

  79. Lucena-Araujo AR, de Oliveira FM, Leite-Cueva SD, et al. High expression of AURKA and AURKB is associated with unfavorable cytogenetic abnormalities and high white blood cell count in patients with acute myeloid leukemia. Leuk Res. 2011;35:260–4.

    Article  CAS  PubMed  Google Scholar 

  80. Ikezoe T, Yang J, Nishioka C, et al. A novel treatment strategy targeting aurora kinases in acute myelogenous leukemia. Mol Cancer Ther. 2007;6:1851–7.

    Article  CAS  PubMed  Google Scholar 

  81. Oke A, Pearce D, Wilkinson RW, et al. AZD1152 rapidly and negatively affects the growth and survival of human acute myeloid leukemia cells in vitro and in vivo. Cancer Res. 2009;69:4150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang J, Ikezoe T, Nishioka C, et al. AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood. 2007;110:2034–40.

    Article  CAS  PubMed  Google Scholar 

  83. Kantarjian HM, Sekeres MA, Ribrag V, et al. Phase I study assessing the safety and tolerability of barasertib (AZD1152) with low-dose cytosine arabinoside in elderly patients with AML. Clin Lymphoma Myeloma Leuk. 2013;13:559–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kantarjian HM, Martinelli G, Jabbour EJ, et al. Stage I of a phase 2 study assessing the efficacy, safety, and tolerability of barasertib (AZD1152) versus low-dose cytosine arabinoside in elderly patients with acute myeloid leukemia. Cancer. 2013;119:2611–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mandal R, Strebhardt K. Plk1: unexpected roles in DNA replication. Cell Res. 2013;23:1251–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Van den Bossche J, Lardon F, Deschoolmeester V, et al. Spotlight on Volasertib: preclinical and clinical evaluation of a promising Plk1 inhibitor. Med Res Rev. 2016;36:749–86.

    Article  PubMed  CAS  Google Scholar 

  87. Cholewa BD, Liu X, Ahmad N. The role of polo-like kinase 1 in carcinogenesis: cause or consequence? Cancer Res. 2013;73:6848–55.

    Article  CAS  PubMed  Google Scholar 

  88. Gjertsen BT, Schoffski P. Discovery and development of the polo-like kinase inhibitor volasertib in cancer therapy. Leukemia. 2015;29:11–9.

    Article  CAS  PubMed  Google Scholar 

  89. Dohner H, Lubbert M, Fiedler W, et al. Randomized, phase 2 trial of low-dose cytarabine with or without volasertib in AML patients not suitable for induction therapy. Blood. 2014;124:1426–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Talati C, Griffiths EA, Wetzler M, et al. Polo-like kinase inhibitors in hematologic malignancies. Crit Rev Oncol Hematol. 2016;98:200–10.

    Article  PubMed  Google Scholar 

  91. Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, et al. A small molecule RAS-mimetic disrupts RAS Association with effector proteins to block signaling. Cell. 2016;165:643–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gumireddy K, Reddy MV, Cosenza SC, et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell. 2005;7:275–86.

    Article  CAS  PubMed  Google Scholar 

  93. Prasad A, Park IW, Allen H, et al. Styryl sulfonyl compounds inhibit translation of cyclin D1 in mantle cell lymphoma cells. Oncogene. 2009;28:1518–28.

    Article  CAS  PubMed  Google Scholar 

  94. Garcia-Manero G, Fenaux P, Al-Kali A, et al. Comprehensive analysis of safety: Rigosertib in 557 patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Blood. 2016;128:2011.

    Google Scholar 

  95. Olnes MJ, Shenoy A, Weinstein B, et al. Directed therapy for patients with myelodysplastic syndromes (MDS) by suppression of cyclin D1 with ON 01910.Na. Leuk Res. 2012;36:982–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Garcia-Manero G, Fenaux P, Al-Kali A, et al. Overall survival and subgroup analysis from a randomized phase III study of intravenous Rigosertib versus best supportive care (BSC) in patients (pts) with higher-risk myelodysplastic syndrome (HR-MDS) after failure of Hypomethylating agents (HMAs). Blood. 2014;124:163.

    Article  Google Scholar 

  97. Navada SC, Garcia-Manero G, Hearn KP, et al. Combination of oral Rigosertib and injectable Azacitidine in patients with myelodysplastic syndromes (MDS): results from a phase II study. Blood. 2016;128:3167.

    Google Scholar 

  98. Andreeff M, Jiang S, Zhang X, et al. Expression of Bcl-2-related genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid. Leukemia. 1999;13:1881–92.

    Article  CAS  PubMed  Google Scholar 

  99. S Soderquist R, Eastman A. BCL2 inhibitors as anticancer drugs: a plethora of misleading BH3 mimetics. Mol Cancer Ther. 2016;15:2011–7.

    Article  CAS  PubMed  Google Scholar 

  100. Pan R, Hogdal LJ, Benito JM, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4:362–75.

    Article  CAS  PubMed  Google Scholar 

  101. Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase II study of Venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6:1106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chan SM, Thomas D, Corces-Zimmerman MR, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015;21:178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jilg S, Kauschinger J, Reidel V, et al. Combination of 5-Azacytidine and ABT-199 has a synergistic apoptotic effect in high-risk MDS/sAML after HMA failure. Blood. 2016;128:4297.

    Google Scholar 

  104. Stahl M, Kohrman N, Gore SD, et al. Epigenetics in cancer: a hematological perspective. PLoS Genet. 2016;12:e1006193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Shih AH, Abdel-Wahab O, Patel JP, et al. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012;12:599–612.

    Article  CAS  PubMed  Google Scholar 

  106. Dawson MA, Kouzarides T, Huntly BJ. Targeting epigenetic readers in cancer. N Engl J Med. 2012;367:647–57.

    Article  CAS  PubMed  Google Scholar 

  107. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Abdel-Wahab O, Mullally A, Hedvat C, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114:144–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lund K, Adams PD, Copland M. EZH2 in normal and malignant hematopoiesis. Leukemia. 2014;28:44–9.

    Article  CAS  PubMed  Google Scholar 

  110. Abdel-Wahab O, Dey A. The ASXL-BAP1 axis: new factors in myelopoiesis, cancer and epigenetics. Leukemia. 2013;27:10–5.

    Article  CAS  PubMed  Google Scholar 

  111. Zeidan AM, Stahl M, Komrokji R. Emerging biological therapies for the treatment of myelodysplastic syndromes. Expert Opin Emerg Drugs. 2016;21:283–300.

    Article  CAS  PubMed  Google Scholar 

  112. Stahl M, Podoltsev NA, DeVeaux M, et al. The Use of Hypomethylating Agents (HMAs) in Patients with Relapsed and Refractory Acute Myeloid Leukemia (RR-AML): Clinical Outcomes and Their Predictors in a Large International Patient Cohort. Blood. 2016;128:1063.

  113. Stahl M, Gore SD, Vey N, et al. Lost in translation? Ten years of development of histone deacetylase inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Expert Opin Investig Drugs. 2016;25:307–17.

    Article  CAS  PubMed  Google Scholar 

  114. Stahl M, Zeidan AM. Hypomethylating agents in combination with histone deacetylase inhibitors in higher risk myelodysplastic syndromes: is there a light at the end of the tunnel? Cancer. 2017;123:911–4.

    Article  PubMed  Google Scholar 

  115. Kim TK, Gore SD, Zeidan AM. Epigenetic therapy in acute myeloid leukemia: current and future directions. Semin Hematol. 2015;52:172–83.

    Article  PubMed  Google Scholar 

  116. Glover AB, Leyland-Jones B. Biochemistry of azacitidine: a review. Cancer Treat Rep. 1987;71:959–64.

    CAS  PubMed  Google Scholar 

  117. Li LH, Olin EJ, Fraser TJ, et al. Phase specificity of 5-azacytidine against mammalian cells in tissue culture. Cancer Res. 1970;30:2770–5.

    CAS  PubMed  Google Scholar 

  118. Steensma DP, Baer MR, Slack JL, et al. Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial. J Clin Oncol. 2009;27:3842–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Saunthararajah Y. Key clinical observations after 5-azacytidine and decitabine treatment of myelodysplastic syndromes suggest practical solutions for better outcomes. Hematology Am Soc Hematol Educ Program. 2013;2013:511–21.

    PubMed  Google Scholar 

  120. Issa JP, Roboz G, Rizzieri D, et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 2015;16:1099–110.

    Article  CAS  PubMed  Google Scholar 

  121. Kropf P, Jabbour E, Yee K, et al. Late responses and overall survival (OS) from long term follow up of a randomized phase II study of SGI-110 (guadecitabine) 5-day regimen in elderly AML who are not eligible for intensive chemotherapy. European Hematology Association Meeting, 2015, Abstract P571.

  122. Daver NK, Kantarjian HM, Roboz GJ, et al. Long Term Survival and Clinical Complete Responses of Various Prognostic Subgroups in 103 Relapsed/Refractory Acute Myeloid Leukemia (r/r AML) Patients Treated with Guadecitabine (SGI-110) in Phase 2 Studies. Blood. 2016;128:904.

  123. Schoch C, Schnittger S, Klaus M, et al. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood. 2003;102:2395–402.

    Article  CAS  PubMed  Google Scholar 

  124. Bernt KM, Armstrong SA. Targeting epigenetic programs in MLL-rearranged leukemias. Hematology Am Soc Hematol Educ Program. 2011;2011:354–60.

    PubMed  Google Scholar 

  125. Okada Y, Feng Q, Lin Y, et al. hDOT1L links histone methylation to leukemogenesis. Cell. 2005;121:167–78.

    Article  CAS  PubMed  Google Scholar 

  126. Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7:823–33.

    Article  CAS  PubMed  Google Scholar 

  127. Bernt KM, Zhu N, Sinha AU, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 2011;20:66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nguyen AT, Taranova O, He J, et al. DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood. 2011;117:6912–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Daigle SR, Olhava EJ, Therkelsen CA, et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell. 2011;20:53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stein E, Garcia-Manero G, Rizzieri DA. A phase 1 study of the DOT1L inhibitor, Pinometostat (EPZ-5676), in adults with relapsed or refractory leukemia: safety, clinical activity, exposure and target inhibition. Blood. 2015;126:2547.

    Google Scholar 

  131. Abedin SM, Boddy CS, Munshi HG. BET inhibitors in the treatment of hematologic malignancies: current insights and future prospects. Onco Targets Ther. 2016;9:5943–53.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Dawson MA, Prinjha RK, Dittmann A, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Berthon C, Raffoux E, Thomas X, et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 2016;3:e186–95.

    Article  PubMed  Google Scholar 

  135. Dawson MA, Gudgin EJ, Horton SJ, et al. Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia. Leukemia. 2014;28:311–20.

    Article  CAS  PubMed  Google Scholar 

  136. Fiskus W, Sharma S, Qi J, et al. BET protein antagonist JQ1 is synergistically lethal with FLT3 tyrosine kinase inhibitor (TKI) and overcomes resistance to FLT3-TKI in AML cells expressing FLT-ITD. Mol Cancer Ther. 2014;13:2315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang YH, Scadden DT. Targeting the Warburg effect for leukemia therapy: magnitude matters. Mol Cell Oncol. 2015;2:e981988.

    PubMed  PubMed Central  Google Scholar 

  138. Warburg O. Origin of cancer cells. Oncologia. 1956;9:75–83.

    Article  CAS  PubMed  Google Scholar 

  139. Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013;4:e532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

    Article  CAS  PubMed  Google Scholar 

  141. Fathi AT, Wander SA, Faramand R, et al. Biochemical, epigenetic, and metabolic approaches to target IDH mutations in acute myeloid leukemia. Semin Hematol. 2015;52:165–71.

    Article  CAS  PubMed  Google Scholar 

  142. Stein EM. Molecular pathways: IDH2 mutations-co-opting cellular metabolism for malignant transformation. Clin Cancer Res. 2016;22:16–9.

    Article  CAS  PubMed  Google Scholar 

  143. Cairns RA, Mak TW. Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov. 2013;3:730–41.

    Article  CAS  PubMed  Google Scholar 

  144. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dang L, Yen K, Attar EC. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol. 2016;27:599–608.

    Article  CAS  PubMed  Google Scholar 

  149. Wise DR, Ward PS, Shay JE, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011;108:19611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yen K, Travins J, Wang F, et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov. 2017;7:478–93.

  155. Shih AH, Shank KR, Meydan C, et al. AG-221, a small molecule mutant IDH2 inhibitor, remodels the epigenetic state of IDH2-mutant cells and induces alterations in self-renewal/differentiation in IDH2-mutant AML model in vivo. Blood. 2014;124:437.

    Article  CAS  Google Scholar 

  156. Wang F, Travins J, DeLaBarre B, et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science. 2013;340:622–6.

    Article  CAS  PubMed  Google Scholar 

  157. Stein EM, Fathi AT, DiNardo CD, et al. Enasidenib (AG-221), a potent oral inhibitor of mutant Isocitrate dehydrogenase 2 (<em>IDH2</em>) enzyme, induces hematologic responses in patients with myelodysplastic syndromes (MDS). Blood. 2016;128:343.

    Google Scholar 

  158. DiNardo C, de Botton S, Pollyea DA, et al. Molecular profiling and relationship with clinical response in patients with IDH1 mutation-positive hematologic malignancies receiving AG-120, a first-in-class potent inhibitor of mutant IDH1, in addition to data from the completed dose escalation portion of the phase 1 study. Blood. 2015;126:1306.

    Article  CAS  Google Scholar 

  159. Birendra KC, DiNardo CD. Evidence for clinical differentiation and differentiation syndrome in patients with acute myeloid leukemia and IDH1 mutations treated with the targeted mutant IDH1 inhibitor, AG-120. Clin Lymphoma Myeloma Leuk. 2016;16:460–5.

    Article  CAS  PubMed  Google Scholar 

  160. Matre P, Velez J, Jacamo R, et al. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget. 2016;7:79722–35.

    PubMed  PubMed Central  Google Scholar 

  161. Wang ES, Frankfurt O, Orford KW, et al. Phase 1 study of CB-839, a first-in-class, orally administered small molecule inhibitor of Glutaminase in patients with relapsed/refractory leukemia. Blood. 2015;126:2566.

    Google Scholar 

  162. Willems L, Jacque N, Jacquel A, et al. Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood. 2013;122:3521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22:633–42.

    Article  CAS  PubMed  Google Scholar 

  164. Fallarino F, Grohmann U, You S, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol. 2006;176:6752–61.

    Article  CAS  PubMed  Google Scholar 

  165. Mezrich JD, Fechner JH, Zhang X, et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185:3190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Folgiero V, Goffredo BM, Filippini P, et al. Indoleamine 2,3-dioxygenase 1 (IDO1) activity in leukemia blasts correlates with poor outcome in childhood acute myeloid leukemia. Oncotarget. 2014;5:2052–64.

    Article  PubMed  Google Scholar 

  167. Corm S, Berthon C, Imbenotte M, et al. Indoleamine 2,3-dioxygenase activity of acute myeloid leukemia cells can be measured from patients’ sera by HPLC and is inducible by IFN-gamma. Leuk Res. 2009;33:490–4.

    Article  CAS  PubMed  Google Scholar 

  168. Chamuleau ME, van de Loosdrecht AA, Hess CJ, et al. High INDO (indoleamine 2,3-dioxygenase) mRNA level in blasts of acute myeloid leukemic patients predicts poor clinical outcome. Haematologica. 2008;93:1894–8.

    Article  CAS  PubMed  Google Scholar 

  169. Mabuchi R, Hara T, Matsumoto T, et al. High serum concentration of L-kynurenine predicts unfavorable outcomes in patients with acute myeloid leukemia. Leuk Lymphoma. 2016;57:92–8.

    Article  CAS  PubMed  Google Scholar 

  170. Hou CC, Chen YP, Wu JH, et al. A galactolipid possesses novel cancer chemopreventive effects by suppressing inflammatory mediators and mouse B16 melanoma. Cancer Res. 2007;67:6907–15.

    Article  CAS  PubMed  Google Scholar 

  171. Wainwright DA, Chang AL, Dey M, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res. 2014;20:5290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Curti A, Trabanelli S, Salvestrini V, et al. The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood. 2009;113:2394–401.

    Article  CAS  PubMed  Google Scholar 

  173. Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 2016;37:193–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Powles RL, Crowther D, Bateman CJ, et al. Immunotherapy for acute myelogenous leukaemia. Br J Cancer. 1973;28:365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lichtenegger FS, Krupka C, Kohnke T, et al. Immunotherapy for acute myeloid leukemia. Semin Hematol. 2015;52:207–14.

    Article  CAS  PubMed  Google Scholar 

  176. Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood. 2008;112:4371–83.

    Article  CAS  PubMed  Google Scholar 

  177. Bleakley M, Riddell SR. Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer. 2004;4:371–80.

    Article  CAS  PubMed  Google Scholar 

  178. Shlomchik WD. Graft-versus-host disease. Nat Rev Immunol. 2007;7:340–52.

    Article  CAS  PubMed  Google Scholar 

  179. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.

    Article  PubMed  CAS  Google Scholar 

  180. Ruben JM, Visser LL, Bontkes HJ, et al. Targeting the acute myeloid leukemic stem cell compartment by enhancing tumor cell-based vaccines. Immunotherapy. 2013;5:859–68.

    Article  CAS  PubMed  Google Scholar 

  181. Bonaccorsi I, Pezzino G, Morandi B, et al. Novel perspectives on dendritic cell-based immunotherapy of cancer. Immunol Lett. 2013;155:6–10.

    Article  CAS  PubMed  Google Scholar 

  182. Tettamanti S, Magnani CF, Biondi A, et al. Acute myeloid leukemia and novel biological treatments: monoclonal antibodies and cell-based gene-modified immune effectors. Immunol Lett. 2013;155:43–6.

    Article  CAS  PubMed  Google Scholar 

  183. Knaus HA, Kanakry CG, Luznik L, et al. Immunomodulatory drugs II: immune checkpoint agents in acute leukemia. Curr Drug Targets. 2017;18:315–31.

  184. Zitvogel L, Galluzzi L, Smyth MJ, et al. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity. 2013;39:74–88.

    Article  CAS  PubMed  Google Scholar 

  185. Galluzzi L, Senovilla L, Zitvogel L, et al. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov. 2012;11:215–33.

    Article  CAS  PubMed  Google Scholar 

  186. Heninger E, Krueger TE, Lang JM. Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol. 2015;6:29.

    PubMed  PubMed Central  Google Scholar 

  187. Yang H, Bueso-Ramos C, DiNardo C, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28:1280–8.

    Article  CAS  PubMed  Google Scholar 

  188. Anguille S, Van Tendeloo VF, Berneman ZN. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia. 2012;26:2186–96.

    Article  CAS  PubMed  Google Scholar 

  189. Osman Y, Takahashi M, Zheng Z, et al. Dendritic cells stimulate the expansion of PML-RAR alpha specific cytotoxic T-lymphocytes: its applicability for antileukemia immunotherapy. J Exp Clin Cancer Res. 1999;18:485–92.

    CAS  PubMed  Google Scholar 

  190. Graf C, Heidel F, Tenzer S, et al. A neoepitope generated by an FLT3 internal tandem duplication (FLT3-ITD) is recognized by leukemia-reactive autologous CD8+ T cells. Blood. 2007;109:2985–8.

    CAS  PubMed  Google Scholar 

  191. Greiner J, Ono Y, Hofmann S, et al. Mutated regions of nucleophosmin 1 elicit both CD4(+) and CD8(+) T-cell responses in patients with acute myeloid leukemia. Blood. 2012;120:1282–9.

    Article  CAS  PubMed  Google Scholar 

  192. Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clinical Cancer Res. 2009;15:5323–37.

    Article  Google Scholar 

  193. Van Driessche A, Berneman ZN, Van Tendeloo VF. Active specific immunotherapy targeting the Wilms’ tumor protein 1 (WT1) for patients with hematological malignancies and solid tumors: lessons from early clinical trials. Oncologist. 2012;17:250–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Saito Y, Kitamura H, Hijikata A, et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med. 2010;2:17ra19.

    Article  CAS  Google Scholar 

  195. Gao L, Bellantuono I, Elsasser A, et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood. 2000;95:2198–203.

    CAS  PubMed  Google Scholar 

  196. Guinn BA, Bland EA, Lodi U, et al. Humoral detection of leukaemia-associated antigens in presentation acute myeloid leukaemia. Biochem Biophys Res Commun. 2005;335:1293–304.

    Article  CAS  PubMed  Google Scholar 

  197. Atanackovic D, Luetkens T, Kloth B, et al. Cancer-testis antigen expression and its epigenetic modulation in acute myeloid leukemia. Am J Hematol. 2011;86:918–22.

    Article  CAS  PubMed  Google Scholar 

  198. Beatty GL, Smith JS, Reshef R, et al. Functional unresponsiveness and replicative senescence of myeloid leukemia antigen-specific CD8+ T cells after allogeneic stem cell transplantation. Clinical Cancer Res. 2009;15:4944–53.

    Article  CAS  Google Scholar 

  199. Sugiyama H. WT1 (Wilms’ tumor gene 1): biology and cancer immunotherapy. Jpn J Clin Oncol. 2010;40:377–87.

    Article  PubMed  Google Scholar 

  200. Rezvani K, Yong AS, Tawab A, et al. Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood. 2009;113:2245–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Maslak PG, Dao T, Krug LM, et al. Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood. 2010;116:171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Guo Y, Niiya H, Azuma T, et al. Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner. Blood. 2005;106:1415–8.

    Article  CAS  PubMed  Google Scholar 

  203. Chaise C, Buchan SL, Rice J, et al. DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance. Blood. 2008;112:2956–64.

    Article  CAS  PubMed  Google Scholar 

  204. Rezvani K, Yong AS, Mielke S, et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111:236–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Maslak P, Dao T, Bernal Y. et al., Phase II trial of WT1 analog peptide vaccine in adults with acute myeloid leukemia (AML) in first complete remission (CR). J Clin Oncol. 2016;34 (suppl 15):7005.

  206. Uttenthal B, Martinez-Davila I, Ivey A, et al. Wilms’ tumour 1 (WT1) peptide vaccination in patients with acute myeloid leukaemia induces short-lived WT1-specific immune responses. Br J Haematol. 2014;164:366–75.

    Article  CAS  PubMed  Google Scholar 

  207. Van Tendeloo VF, Van de Velde A, Van Driessche A, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A. 2010;107:13824–9.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Subklewe M, Geiger C, Lichtenegger FS, et al. New generation dendritic cell vaccine for immunotherapy of acute myeloid leukemia. Cancer Immunol Immunother. 2014;63:1093–103.

    Article  CAS  PubMed  Google Scholar 

  209. Ruben JM, van den Ancker W, Bontkes HJ, et al. Apoptotic blebs from leukemic cells as a preferred source of tumor-associated antigen for dendritic cell-based vaccines. Cancer Immunol Immunother. 2014;63:335–45.

    Article  CAS  PubMed  Google Scholar 

  210. Alatrash G, Molldrem JJ. Vaccines as consolidation therapy for myeloid leukemia. Expert Rev Hematol. 2011;4:37–50.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Ravandi F. Role of cytokines in the treatment of acute leukemias: a review. Leukemia. 2006;20:563–71.

    Article  CAS  PubMed  Google Scholar 

  212. Mao C, Fu XH, Yuan JQ, et al. Interleukin-2 as maintenance therapy for children and adults with acute myeloid leukaemia in first complete remission. Cochrane Database Syst Rev. 2015:CD010248.

  213. Brune M, Castaigne S, Catalano J, et al. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood. 2006;108:88–96.

    Article  CAS  PubMed  Google Scholar 

  214. EpiCept Corporation Provides U.S. Regulatory Update for Ceplene® Clinical Development Business Wire 2011.

  215. Majeti R. Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene. 2011;30:1009–19.

    Article  CAS  PubMed  Google Scholar 

  216. Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–84.

    Article  CAS  PubMed  Google Scholar 

  217. Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009;69:4941–4.

    Article  CAS  PubMed  Google Scholar 

  218. Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19:3244–54.

    Article  CAS  PubMed  Google Scholar 

  219. Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–6.

    CAS  PubMed  Google Scholar 

  220. Larson RA, Sievers EL, Stadtmauer EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104:1442–52.

    Article  CAS  PubMed  Google Scholar 

  221. Petersdorf SH, Kopecky KJ, Slovak M, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121:4854–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Burnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29:369–77.

    Article  CAS  PubMed  Google Scholar 

  223. Burnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30:3924–31.

    Article  CAS  PubMed  Google Scholar 

  224. Castaigne S, Pautas C, Terre C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379:1508–16.

  225. Delaunay JRC, Pigneux A, et al. Addition of gemtuzumab ozogamycin to chemotherapy improves event-free survival but not overall survival of AML patients with intermediate cytogenetics not eligible for allogeneic transplantation: results of the GOELAMS AML 2006 IR study. Blood. 2011;118:79.

  226. Kung Sutherland MS, Walter RB, Jeffrey SC, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122:1455–63.

    Article  PubMed  CAS  Google Scholar 

  227. Bixby D, Sein AS, Fathi AT, et al. Vadastuximab talirine monotherapy in older patients with treatment naive CD33-positive acute myeloid leukemia (AML). Blood. 2016;128:590.

  228. Erba HP LM, Vasu S, et al. A phase 1b study of vadastuximab talirine in combination with 7+3 induction therapy for patients with newly diagnosed acute myeloid leukemia (AML). Blood. 2016;128:211.

  229. Fathi AT, Erba HP, Lancet JE, et al. Vadastuximab talirine plus hypomethylating agents: a well-tolerated regimen with high remission rate in frontline older patients with acute myeloid leukemia (AML). Blood. 2016;128:591.

  230. Seattle Genetics. Seattle genetics announces clinical hold on several phase 1 trials of vadastuximab talirine (SGN-CD33A). Enrollment continues on phase 3 CASCADE trial in acute myeloid leukemia and phase 1/2 trial in myelodysplastic syndrome [press release]. Bothwell (WA): Seattle Genetics; 2016 Dec 27.

  231. Stahl M, Kim TK, Zeidan AM. Update on acute myeloid leukemia stem cells: new discoveries and therapeutic opportunities. World J Stem Cells. 2016;8:316–31.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Jin L, Lee EM, Ramshaw HS, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell. 2009;5:31–42.

    Article  CAS  PubMed  Google Scholar 

  233. He SZ, Busfield S, Ritchie DS, et al. A phase 1 study of the safety, pharmacokinetics and anti-leukemic activity of the anti-CD123 monoclonal antibody CSL360 in relapsed, refractory or high-risk acute myeloid leukemia. Leuk Lymphoma. 2015;56:1406–15.

    Article  CAS  PubMed  Google Scholar 

  234. Smith BD, Roboz GJ, Walter RB et al. First-in man, phase 1 study of CSL362 (anti-IL3Rα / anti-CD123 monoclonal antibody) in patients with CD123+ acute myeloid leukemia (AML) in CR at high risk for early relapse. Blood. 2014;124:120.

  235. Syed K, Pietsch C, Axel A, et al. Preclinical evaluation of CSL362/JNJ-56022473 single agent in in vitro assays. Blood. 2015;126:4946.

    Google Scholar 

  236. Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29:2493–8.

    Article  CAS  PubMed  Google Scholar 

  237. Bargou R, Leo E, Zugmaier G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321:974–7.

    Article  CAS  PubMed  Google Scholar 

  238. Krupka C, Kufer P, Kischel R, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood. 2014;123:356–65.

    Article  CAS  PubMed  Google Scholar 

  239. Friedrich M, Henn A, Raum T, et al. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther. 2014;13:1549–57.

    Article  CAS  PubMed  Google Scholar 

  240. Laszlo GS, Gudgeon CJ, Harrington KH, et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 2014;123:554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Abdool A, Yeh CH, Kantarjian H, et al. Circulating CD33 and its clinical value in acute leukemia. Exp Hematol. 2010;38:462–71.

    Article  CAS  PubMed  Google Scholar 

  242. Moore PA, Zhang W, Rainey GJ, et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011;117:4542–51.

    Article  CAS  PubMed  Google Scholar 

  243. Rader C. DARTs take aim at BiTEs. Blood. 2011;117:4403–4.

    Article  CAS  PubMed  Google Scholar 

  244. Al Hussaini MH, Ritchey J, Rettig MP, et al. Targeting CD123 in leukemic stem cells using dual affinity re-targeting molecules (DARTs). Blood. 2013;122:360.

  245. Maus MV, Grupp SA, Porter DL, et al. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood. 2014;123:2625–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity. 2013;39:49–60.

    Article  CAS  PubMed  Google Scholar 

  247. Eshhar Z, Waks T, Bendavid A, et al. Functional expression of chimeric receptor genes in human T cells. J Immunol Methods. 2001;248:67–76.

    Article  CAS  PubMed  Google Scholar 

  248. Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139.

    Article  PubMed  Google Scholar 

  251. Kochenderfer JN, Dudley ME, Carpenter RO, et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood. 2013;122:4129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Neelapu SS, Locke F, Bartlett NL, et al.KTE-C19 (anti-CD19 CAR T Cells) Induces Complete Remissions in Patients with Refractory Diffuse Large B-Cell Lymphoma (DLBCL): Results from the Pivotal Phase 2 ZUMA-1. Presented at: American Society of Hematology 58th Annual Meeting; December 3–6. San Diego: Abstract LBA6; 2016. 

  253. Ritchie DS, Neeson PJ, Khot A, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013;21:2122–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127:3321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6:664–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Juno Therapeutics Places JCAR015 Phase II ROCKET Trial on Clinical Hold. Juno Therapeutics; 2016.

  257. Juno Therapeutics to Resume JCAR015 Phase II ROCKET Trial After FDA Clinical Hold. ASCO POST; 2016.

  258. Hermanson DL, Kaufman DS. Utilizing chimeric antigen receptors to direct natural killer cell activity. Front Immunol. 2015;6:195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Glienke W, Esser R, Priesner C, et al. Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol. 2015;6:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Cichocki FV, Bahram, Sarhan D, et al. Development and scale-up of a novel GMP method for enrichment and expansion of terminally differentiated adaptive natural killer cells (FATE-NK100) with enhanced anti-tumor function. Blood. 2016;128:1225.

    Google Scholar 

  261. Fate Therapeutics Announces FDA Clearance of Investigational New Drug Application for FATE-NK100 Natural Killer Cell Cancer Immunotherapy.

  262. Yang XY, Zeng H, Chen FP. Cytokine-induced killer cells: a novel immunotherapy strategy for leukemia. Oncol Lett. 2015;9:535–41.

    PubMed  Google Scholar 

  263. Schmidt-Wolf IG, Negrin RS, Kiem HP, et al. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med. 1991;174:139–49.

    Article  CAS  PubMed  Google Scholar 

  264. Lussana F, Introna M, Golay J, et al. Final Analysis of a Multicenter Pilot Phase 2 Study of Cytokine Induced Killer (CIK) Cells for Patients with Relapse after Allogeneic Transplantation. Blood. 106;128:1160.

  265. Marin V, Pizzitola I, Agostoni V, et al. Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: improvement of their immune activity by expression of CD33-specific chimeric receptors. Haematologica. 2010;95:2144–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Tettamanti S, Marin V, Pizzitola I, et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br J Haematol. 2013;161:389–401.

    Article  CAS  PubMed  Google Scholar 

  267. Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.

    Article  CAS  PubMed  Google Scholar 

  268. Armand P. Immune checkpoint blockade in hematologic malignancies. Blood. 2015;125:3393–400.

    Article  CAS  PubMed  Google Scholar 

  269. Zhang L, Gajewski TF, Kline J. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood. 2009;114:1545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Daver N, Basu S, Garcia-Manero G, et al. Phase Ib/II study of nivolumab in combination with azacitidine (AZA) in patients (pts) with relapsed acute myeloid leukemia (AML). Blood. 2016;128:763.

  271. Davids MS, Kim HT, Bachireddy P, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375:143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Estey E, Levine RL, Lowenberg B. Current challenges in clinical development of "targeted therapies": the case of acute myeloid leukemia. Blood. 2015;125:2461–6.

    Article  CAS  PubMed  Google Scholar 

  273. Welch JS, Ley TJ, Link DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150:264–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Klco JM, Spencer DH, Miller CA, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell. 2014;25:379–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Kronke J, Bullinger L, Teleanu V, et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood. 2013;122:100–8.

    Article  PubMed  CAS  Google Scholar 

  276. Kroemer G, Galluzzi L, Kepp O, et al. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.

    Article  CAS  PubMed  Google Scholar 

  277. Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011;8:151–60.

    Article  CAS  PubMed  Google Scholar 

  278. Wemeau M, Kepp O, Tesniere A, et al. Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis. 2010;1:e104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61.

    Article  CAS  PubMed  Google Scholar 

  280. Fucikova J, Kralikova P, Fialova A, et al. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res. 2011;71:4821–33.

    Article  CAS  PubMed  Google Scholar 

  281. Morrissey KM, Yuraszeck TM, Li CC, et al. Immunotherapy and novel combinations in Oncology: current landscape, challenges, and opportunities. Clin Transl Sci. 2016;9:89–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Rizvi NA, Hellmann MD, Brahmer JR, et al. Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2016;34:2969–79.

    Article  PubMed  Google Scholar 

  283. Goodyear O, Agathanggelou A, Novitzky-Basso I, et al. Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood. 2010;116:1908–18.

    Article  CAS  PubMed  Google Scholar 

  284. Almstedt M, Blagitko-Dorfs N, Duque-Afonso J, et al. The DNA demethylating agent 5-aza-2′-deoxycytidine induces expression of NY-ESO-1 and other cancer/testis antigens in myeloid leukemia cells. Leuk Res. 2010;34:899–905.

    Article  CAS  PubMed  Google Scholar 

  285. Srivastava P, Paluch BE, Matsuzaki J, et al. Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy. Oncotarget. 2016;7:12840–56.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Srivastava P, Paluch BE, Matsuzaki J, et al. Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells and xenografts. Leuk Res. 2014;38:1332–41.

    Article  CAS  PubMed  Google Scholar 

  287. Wang LX, Mei ZY, Zhou JH, et al. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses. PLoS One. 2013;8:e62924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Pratz KW, Cho E, Levis MJ, et al. A pharmacodynamic study of sorafenib in patients with relapsed and refractory acute leukemias. Leukemia. 2010;24:1437–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Ravandi F, Cortes JE, Jones D, et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol. 2010;28:1856–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Ohanian M, Garcia-Manero G, Jabbour EJ, Daver N, Borthakur G, Kadia TM, et al. Combination of Sorafenib and 5-Azacytidine in older patients with untreated acute myeloid leukemia with FLT3-ITD mutation. Blood. 2016;128:1611.

    Google Scholar 

  291. Stone RM, Fischer T, Paquette R, et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia. 2012;26:2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Cooper BW, Kindwall-Keller TL, Craig MD, et al. A phase I study of midostaurin and azacitidine in relapsed and elderly AML patients. Clin Lymphoma Myeloma Leuk. 2015;15:428–32. e422

    Article  PubMed  PubMed Central  Google Scholar 

  293. Ramsingh G, Westervelt P, McBride A, et al. Phase I study of cladribine, cytarabine, granulocyte colony stimulating factor (CLAG regimen) and midostaurin and all-trans retinoic acid in relapsed/refractory AML. Int J Hematol. 2014;99:272–8.

    Article  PubMed  PubMed Central  Google Scholar 

  294. Williams CB, Kambhampati S, Fiskus W, et al. Preclinical and phase I results of decitabine in combination with midostaurin (PKC412) for newly diagnosed elderly or relapsed/refractory adult patients with acute myeloid leukemia. Pharmacotherapy. 2013;33:1341–52.

    Article  CAS  PubMed  Google Scholar 

  295. Strati P, Kantarjian H, Ravandi F, et al. Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol. 2015;90:276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Fischer T, Stone RM, Deangelo DJ, et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28:4339–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Abdelall W, Kantarjian HM, Borthakur G, et al. The combination of Quizartinib with Azacitidine or low dose Cytarabine is highly active in patients (pts) with FLT3-ITD mutated myeloid Leukemias: interim report of a phase I/II trial. Blood. 2016;128:1642.

    Article  CAS  Google Scholar 

  298. Levis MJ, Perl AE, Dombret H, et al. Final results of a phase 2 open-label, monotherapy efficacy and safety study of Quizartinib (AC220) in patients with FLT3-ITD positive or negative relapsed/refractory acute myeloid leukemia after second-line chemotherapy or hematopoietic stem cell transplantation. Blood. 2012;120:673.

    Google Scholar 

  299. Bowen D, Russell N, Knapper S, et al. AC220 (Quizartinib) can be safely combined with conventional chemotherapy in older patients with newly diagnosed acute myeloid Leukaemia: experience from the AML18 pilot trial. Blood. 2013;122:622.

    Google Scholar 

  300. Iyer SP, Jethava Y, Karanes C, et al. Safety study of salvage chemotherapy high-dose Ara-C/Mitoxantrone (HAM) and type I FLT3-TKI Crenolanib in first relapsed/primary refractory AML. Blood. 2016;128:3983.

    Google Scholar 

  301. DiNardo C, Pollyea D, Pratz K, et al. A phase 1b study of Venetoclax (ABT-199/GDC-0199) in combination with Decitabine or Azacitidine in treatment-naive patients with acute myelogenous leukemia who are ≥ to 65 years and not eligible for standard induction therapy. Blood. 2015;126:327.

    Article  CAS  Google Scholar 

  302. Konopleva M, Pollyea DA, Potluri J, et al. A phase 2 study of ABT-199 (GDC-0199) in patients with acute myelogenous leukemia (AML). Blood. 2014;124:118.

    Google Scholar 

  303. Stein EM, DiNardo C, Altman JK, et al. Safety and efficacy of AG-221, a potent inhibitor of mutant IDH2 that promotes differentiation of myeloid cells in patients with advanced hematologic malignancies: results of a phase 1/2 trial. Blood. 2015;126:323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer M. Zeidan.

Ethics declarations

Funding

None.

Conflict of Interest

Amer Zeidan served as a consultant for and received honoraria from Ariad, Gilead, Pfizer, Incyte, and Celgene. Maximilian Stahl, Benjamin Lu, and Tae Kon Kim declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stahl, M., Lu, B.Y., Kim, T.K. et al. Novel Therapies for Acute Myeloid Leukemia: Are We Finally Breaking the Deadlock?. Targ Oncol 12, 413–447 (2017). https://doi.org/10.1007/s11523-017-0503-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-017-0503-8

Navigation