Skip to main content
Log in

Synthesis and Characterization of Novel BMI1 Inhibitors Targeting Cellular Self-Renewal in Hepatocellular Carcinoma

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

Hepatocellular carcinoma (HCC) represents one of the most lethal cancers worldwide due to therapy resistance and disease recurrence. Tumor relapse following treatment could be driven by the persistence of liver cancer stem-like cells (CSCs). The protein BMI1 is a member of the polycomb epigenetic factors governing cellular self-renewal, proliferation, and stemness maintenance. BMI1 expression also correlates with poor patient survival in various cancer types.

Objective

We aimed to elucidate the extent to which BMI1 can be used as a potential therapeutic target for CSC eradication in HCC.

Methods

We have recently participated in characterizing the first known pharmacological small molecule inhibitor of BMI1. Here, we synthesized a panel of novel BMI1 inhibitors and examined their ability to alter cellular growth and eliminate cancer progenitor/stem-like cells in HCC with different p53 backgrounds.

Results

Among various molecules examined, RU-A1 particularly downregulated BMI1 expression, impaired cell viability, reduced cell migration, and sensitized HCC cells to 5-fluorouracil (5-FU) in vitro. Notably, long-term analysis of HCC survival showed that, unlike chemotherapy, RU-A1 effectively reduced CSC content, even as monotherapy. BMI1 inhibition with RU-A1 diminished the number of stem-like cells in vitro more efficiently than the model compound C-209, as demonstrated by clonogenic assays and impairment of CSC marker expression. Furthermore, xenograft assays in zebrafish showed that RU-A1 abrogated tumor growth in vivo.

Conclusions

This study demonstrates the ability to identify agents with the propensity for targeting CSCs in HCC that could be explored as novel treatments in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–27.

    Article  CAS  PubMed  Google Scholar 

  2. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362(9399):1907–17.

    Article  PubMed  Google Scholar 

  3. Yilmaz G, Akyol G, Cakir A, Ilhan M. Investigation of diagnostic utility and expression profiles of stem cell markers (CD133 and CD90) in hepatocellular carcinoma, small cell dysplasia, and cirrhosis. Pathol Res Pract. 2014;210(7):419–25.

    Article  CAS  PubMed  Google Scholar 

  4. Lee TK, Castilho A, Ma S, Ng IO. Liver cancer stem cells: implications for a new therapeutic target. Liver Int. 2009;29(7):955–65.

    Article  CAS  PubMed  Google Scholar 

  5. Yao Z, Mishra L. Cancer stem cells and hepatocellular carcinoma. Cancer Biol Ther. 2009;8(18):1691–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith LL, Yeung J, Zeisig BB, Popov N, Huijbers I, Barnes J, et al. Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells. Cell Stem Cell. 2011;8(6):649–62.

    Article  CAS  PubMed  Google Scholar 

  7. Chiba T, Miyagi S, Saraya A, Aoki R, Seki A, Morita Y, et al. The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res. 2008;68(19):7742–9.

    Article  CAS  PubMed  Google Scholar 

  8. Lukacs RU, Memarzadeh S, Wu H, Witte ON. Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell. 2010;7(6):682–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Effendi K, Mori T, Komuta M, Masugi Y, Du W, Sakamoto M. Bmi-1 gene is upregulated in early-stage hepatocellular carcinoma and correlates with ATP-binding cassette transporter B1 expression. Cancer Sci. 2010;101(3):666–72.

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Pan K, Zhang HK, Weng DS, Zhou J, Li JJ, et al. Increased polycomb-group oncogene Bmi-1 expression correlates with poor prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2008;134(5):535–41.

    Article  CAS  PubMed  Google Scholar 

  11. Bansal N, Campbell N, Medina D, Dipaola RS, Bertino JR, Sabaawy HE. Targeting Bmi1 in human prostate tumor initiating cells. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research. 2010, Philadelphia: AACR: Washington, DC. p. Abstract nr 4279.

  12. Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2014;20(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  13. Bansal N, Bartucci M, Yusuff S, Davis S, Flaherty K, Huselid E, et al. BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer. Clin Cancer Res. 2016;22(24):6176–91.

    Article  CAS  PubMed  Google Scholar 

  14. Nishida Y, Maeda A, Chachad D, Ishizawa J, Qiu YH, Kornblau SM, et al. Preclinical activity of the novel B-cell-specific Moloney murine leukemia virus integration site 1 inhibitor PTC-209 in acute myeloid leukemia: implications for leukemia therapy. Cancer Sci. 2015;106(12):1705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mayr C, Wagner A, Loeffelberger M, Bruckner D, Jakab M, Berr F, et al. The BMI1 inhibitor PTC-209 is a potential compound to halt cellular growth in biliary tract cancer cells. Oncotarget. 2016;7(1):745–58.

    Article  PubMed  Google Scholar 

  16. Bolomsky A, Schlangen K, Schreiner W, Zojer N, Ludwig H. Targeting of BMI-1 with PTC-209 shows potent anti-myeloma activity and impairs the tumour microenvironment. J Hematol Oncol. 2016;9:17.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu J, Zhang C, Lin M, Zhu W, Liang Y, Hong X, et al. Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma. Oncotarget. 2014;5(9):2635–47.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347(1–2):70–8.

    CAS  PubMed  Google Scholar 

  19. Bansal N, Davis S, Tereshchenko I, Budak-Alpdogan T, Zhong H, Stein MN, et al. Enrichment of human prostate cancer cells with tumor initiating properties in mouse and zebrafish xenografts by differential adhesion. Prostate. 2014;74(2):187–200.

    Article  CAS  PubMed  Google Scholar 

  20. Glide. Available online at http://www.schrodinger.com/docs/2003_1/pdf/firstdiscovery/fd27_technical_notes.pdf . 2003.

  21. Perola E, Walters WP, Charifson PS. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins. 2004;56(2):235–49.

    Article  CAS  PubMed  Google Scholar 

  22. Hussain SP, Schwank J, Staib F, Wang XW, Harris CC. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene. 2007;26(15):2166–76.

    Article  CAS  PubMed  Google Scholar 

  23. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature. 1999;397(6715):164–8.

    Article  CAS  PubMed  Google Scholar 

  24. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol. 2010;12(10):982–92.

    Article  PubMed  Google Scholar 

  25. Grinstein E, Mahotka C. Stem cell divisions controlled by the proto-oncogene BMI-1. J Stem Cells. 2009;4(3):141–6.

    PubMed  Google Scholar 

  26. Cayrol C, Knibiehler M, Ducommun B. p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells. Oncogene. 1998;16(3):311–20.

    Article  CAS  PubMed  Google Scholar 

  27. Lajtha LG. Stem cell concepts. Differentiation. 1979;14(1–2):23–34.

    Article  CAS  PubMed  Google Scholar 

  28. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9.

    Article  CAS  PubMed  Google Scholar 

  29. Sun JH, Luo Q, Liu LL, Song GB. Liver cancer stem cell markers: progression and therapeutic implications. World J Gastroenterol. 2016;22(13):3547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oishi N, Wang XW. Novel therapeutic strategies for targeting liver cancer stem cells. Int J Biol Sci. 2011;7(5):517–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mihic-Probst D, Kuster A, Kilgus S, Bode-Lesniewska B, Ingold-Heppner B, Leung C, et al. Consistent expression of the stem cell renewal factor BMI-1 in primary and metastatic melanoma. Int J Cancer. 2007;121(8):1764–70.

    Article  CAS  PubMed  Google Scholar 

  32. Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005;115(6):1503–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hayry V, Tynninen O, Haapasalo HK, Wolfer J, Paulus W, Hasselblatt M, et al. Stem cell protein BMI-1 is an independent marker for poor prognosis in oligodendroglial tumours. Neuropathol Appl Neurobiol. 2008;34(5):555–63.

    Article  CAS  PubMed  Google Scholar 

  34. Martin-Padura I, Marighetti P, Agliano A, Colombo F, Larzabal L, Redrado M, et al. Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts. Lab Investig. 2012;92(7):952–66.

    Article  CAS  PubMed  Google Scholar 

  35. Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007;13(14):4042–5.

    Article  CAS  PubMed  Google Scholar 

  36. Mehta M, Khan A, Danish S, Haffty BG, Sabaawy HE. Radiosensitization of primary human glioblastoma stem-like cells with low-dose AKT inhibition. Mol Cancer Ther. 2015;14(5):1171–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim JH, Yoon SY, Jeong SH, Kim SY, Moon SK, Joo JH, et al. Overexpression of Bmi-1 oncoprotein correlates with axillary lymph node metastases in invasive ductal breast cancer. Breast. 2004;13(5):383–8.

    Article  PubMed  Google Scholar 

  38. Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P, et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature. 2004;428(6980):337–41.

    Article  CAS  PubMed  Google Scholar 

  39. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    Article  CAS  PubMed  Google Scholar 

  40. Berezovska OP, Glinskii AB, Yang Z, Li XM, Hoffman RM, Glinsky GV. Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle. 2006;5(16):1886–901.

    Article  CAS  PubMed  Google Scholar 

  41. Ruan ZP, Xu R, Lv Y, Tian T, Wang WJ, Guo H, et al. Bmi1 knockdown inhibits hepatocarcinogenesis. Int J Oncol. 2013;42(1):261–8.

    CAS  PubMed  Google Scholar 

  42. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6(11):846–56.

    Article  CAS  PubMed  Google Scholar 

  43. Fan L, Xu C, Wang C, Tao J, Ho C, Jiang L, et al. Bmi1 is required for hepatic progenitor cell expansion and liver tumor development. PLoS One. 2012;7(9):e46472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML, Davis TW. BMI1 as a novel target for drug discovery in cancer. J Cell Biochem. 2011;112(10):2729–41.

    Article  CAS  PubMed  Google Scholar 

  45. Siddique HR, Saleem M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells. 2012;30(3):372–8.

    Article  CAS  PubMed  Google Scholar 

  46. Jiang L, Li J, Song L. Bmi-1, stem cells and cancer. Acta Biochim Biophys Sin Shanghai. 2009;41(7):527–34.

    Article  CAS  PubMed  Google Scholar 

  47. Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 1999;13(20):2678–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425(6961):962–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dimri GP. What has senescence got to do with cancer? Cancer Cell. 2005;7(6):505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LL, et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell. 2014;157(6):1445–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fasano CA, Dimos JT, Ivanova NB, Lowry N, Lemischka IR, Temple S. shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell. 2007;1(1):87–99.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009;8(10):806–23.

    Article  CAS  PubMed  Google Scholar 

  53. Teng Y, Xie X, Walker S, White DT, Mumm JS, Cowell JK. Evaluating human cancer cell metastasis in zebrafish. BMC Cancer. 2013;13:453.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Leonard Zon (Harvard University) for the Casper zebrafish. We thank members of Dr. David Augeri’s laboratory and core facilities at the Molecular Design and Synthesis laboratory, Rutgers Translational Sciences at Rutgers University for the synthesis, purification and mass spectral analyses of the small molecules utilized in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem E. Sabaawy.

Ethics declarations

Funding for the Study

This project was supported by the Department of Defense Grant (W81XWH-12-1-0249 to H.S.), National Cancer Institute (P30 CA072720 to R.D.) and New Jersey Health Foundation award (Research grant PC-72-16 to H.S.).

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 4339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartucci, M., Hussein, M.S., Huselid, E. et al. Synthesis and Characterization of Novel BMI1 Inhibitors Targeting Cellular Self-Renewal in Hepatocellular Carcinoma. Targ Oncol 12, 449–462 (2017). https://doi.org/10.1007/s11523-017-0501-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-017-0501-x

Navigation