Targeted Oncology

, Volume 10, Issue 4, pp 535–548 | Cite as

Antisense inhibition of microRNA-21 and microRNA-221 in tumor-initiating stem-like cells modulates tumorigenesis, metastasis, and chemotherapy resistance in pancreatic cancer

  • Yue ZhaoEmail author
  • Lu Zhao
  • Ivan Ischenko
  • Qi Bao
  • Bettina Schwarz
  • Hanno Nieß
  • Yan Wang
  • Andrea Renner
  • Josef Mysliwietz
  • Karl-Walter Jauch
  • Peter J. Nelson
  • Joachim W. Ellwart
  • Christiane J. Bruns
  • Peter CamajEmail author
Original Research


Our preliminary studies identified a small population side population (SP) cells in pancreatic cancer cells with stem cell-like properties, which were able to induce fast and aggressive tumor formation in nude mice. Gene expression analysis showed a significant difference in the expression of more than 1,300 genes in SP cells, among which a highly significant difference in microRNA expression of miR-21 and miR-221 between SP and NSP cells was identified. SP cells were identified and characterized by flow cytometry using Hoechst 33342 dye staining from a highly metastatic human pancreatic cancer cell line (L3.6pl). Antagomir transfection was performed using miRNA-21 and miRNA-221 antisense oligonucleotides (ASOs) and followed by detection of cell apoptosis, cell cycle progression, chemosensitivity, and invasion. Sorted SP cells from gemcitabine-resistant L3.6pl cells (L3.6plGres-SP) cells were orthotopically implanted in nude mice with or without miRNA-21 and miRNA-221 ASOs mono- and combination therapy. The administration of antagomir-21 and antagomir-221 significantly reduced the SP cell fraction, decreased SP cell differentiation, and downstream gene regulation, and thereby induced reduction of L3.6pl cell proliferation, invasion, and chemoresistance against gemcitabine and 5-Fluorouracil. Combination of ASOs therapy against miRNA-21 and miRNA-221 significantly inhibited primary tumor growth and metastasis compared to single antagomir treatment, especially, in L3.6plGres-SP-induced pancreatic tumor growth in vivo. These findings further indicate that the inhibition of miR-21 and miR-221 appear particularly suitable to target stem-like subpopulations and address their specific biological function to promote tumor progression in pancreatic cancer.


miRNAs Side population Tumorigenesis Metastasis Chemotherapy resistance Pancreatic cancer 



The authors appreciate the preparation support of the project from Andrea Renner and Sevdije Gashi. We thank the technology support from Anneli Tischmacher. This research was supported by the FöFoLe Research Program (no. 570/548/636) of the University of Munich, Munich, Germany, SPP1190/2 “Tumor vessel interface” (BR 1614/8-2) of the German Research Society (DFG), and the German Research Society (DFG) grant BR 1614/7-1. YZ, LZ, QB, and YW were financially supported by LMU-CSC (The China Scholarship Council) scholarship. Animal experiment was performed in accordance with institutional and governmental guidelines and approval obtained from the ethics commission of the State of Bavaria (no. 55.2-1-54-2531-19-08).

Conflict of interest

No potential conflicts of interest are disclosed.

Supplementary material

11523_2015_360_MOESM1_ESM.docx (158 kb)
Fig. 1S a Only 1/10 amount of L3.6plGres-SP cells were necessary to generate within the same time primary pancreatic tumors identical in tumor size compared to 1 × 106 L3.6plGres whole population cells. b There was no significant difference in tumor weight of primary tumors generated from 1 × 106 L3.6plGres whole cell population compared to 1 × 105 L3.6plGres-SP cells (p = 0.68). Primary pancreatic tumors generated within the same time from 1 × 105 L3.6plGres-NSP cells were significantly smaller than tumors generated from either 1 × 106 L3.6plGres whole population cells or 1 × 105 L3.6plGres-SP cells (L3.6plGres-NSP vs. L3.6plGres-SP, ***p = 0.0003). (DOCX 157 kb)
11523_2015_360_MOESM2_ESM.docx (253 kb)
Fig. 2S Histomorphological and immunohistochemical tissue analysis of cell proliferation, apoptosis, and angiogenesis using H&E, Ki67, TUNEL, and CD31 staining in primary pancreatic tumor generated from L3.6plGres whole population cells versus L3.6plGres-SP cells demonstrating no significant differences in the Ki67 and TUNEL indexes as well as MVD. (DOCX 252 kb)
11523_2015_360_MOESM3_ESM.docx (28 kb)
Table 1S Incidence of primary tumors and metastatic lesions generated from L3.6plGres, L3.6plGres-SP, and L3.6plGres-NSP cells. (DOCX 27 kb)
11523_2015_360_MOESM4_ESM.docx (58 kb)
Table 2S Demographic and histopathological parameters of 28 patients with pancreatic cancer who underwent radical surgery are described. The study groups were comparable in age, sex, grading of the tumor, and pTNM staging. However, there was no significant difference in grading, TNM staging, and lymphatic invasion between high and low expression of the different miRNAs. (DOCX 57 kb)


  1. 1.
    Hariharan D, Saied A, Kocher HM (2008) Analysis of mortality rates for pancreatic cancer across the world. HPB (Oxford) 10(1):58–62CrossRefGoogle Scholar
  2. 2.
    Buchholz M, Gress TM (2009) Molecular changes in pancreatic cancer. Expert Rev Anticancer Ther 9(10):1487–1497CrossRefPubMedGoogle Scholar
  3. 3.
    Stathis A, Moore MJ (2010) Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol 7(3):163–172CrossRefPubMedGoogle Scholar
  4. 4.
    Bao Q, Zhao Y, Renner A, Niess H, Seeliger H, Jauch K-W, Bruns CJ (2010) Cancer stem cells in pancreatic cancer. Cancers 2(3):1629–1641PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034CrossRefPubMedGoogle Scholar
  6. 6.
    Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF, Mori M (2006) Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 24(3):506–513CrossRefPubMedGoogle Scholar
  7. 7.
    Shi GM, Xu Y, Fan J, Zhou J, Yang XR, Qiu SJ, Liao Y, Wu WZ, Ji Y, Ke AW, Ding ZB, He YZ, Wu B, Yang GH, Qin WZ, Zhang W, Zhu J, Min ZH, Wu ZQ (2008) Identification of side population cells in human hepatocellular carcinoma cell lines with stepwise metastatic potentials. J Cancer Res Clin Oncol 134(11):1155–1163CrossRefPubMedGoogle Scholar
  8. 8.
    Kabashima A, Higuchi H, Takaishi H, Matsuzaki Y, Suzuki S, Izumiya M, Iizuka H, Sakai G, Hozawa S, Azuma T, Hibi T (2009) Side population of pancreatic cancer cells predominates in TGF-beta-mediated epithelial to mesenchymal transition and invasion. Int J Cancer 124(12):2771–2779CrossRefPubMedGoogle Scholar
  9. 9.
    Zhou J, Wang CY, Liu T, Wu B, Zhou F, Xiong JX, Wu HS, Tao J, Zhao G, Yang M, Gou SM (2008) Persistence of side population cells with high drug efflux capacity in pancreatic cancer. World J Gastroenterol 14(6):925–930PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44(1):240–251CrossRefPubMedGoogle Scholar
  11. 11.
    Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67(10):4827–4833CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang SN, Huang FT, Huang YJ, Zhong W, Yu Z (2010) Characterization of a cancer stem cell-like side population derived from human pancreatic adenocarcinoma cells. Tumori 96(6):985–992PubMedGoogle Scholar
  13. 13.
    Yao J, Cai HH, Wei JS, An Y, Ji ZL, Lu ZP, Wu JL, Chen P, Jiang KR, Dai CC, Qian ZY, Xu ZK, Miao Y (2010) Side population in the pancreatic cancer cell lines SW1990 and CFPAC-1 is enriched with cancer stem-like cells. Oncol Rep 23(5):1375–1382PubMedGoogle Scholar
  14. 14.
    Niess H, Camaj P, Renner A, Ischenko I, Zhao Y, Krebs S, Mysliwietz J, Jackel C, Nelson PJ, Blum H, Jauch KW, Ellwart JW, Bruns CJ (2014) Side population cells of pancreatic cancer show characteristics of cancer stem cells responsible for resistance and metastasis. Target OncolGoogle Scholar
  15. 15.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866CrossRefPubMedGoogle Scholar
  16. 16.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269CrossRefPubMedGoogle Scholar
  17. 17.
    Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA (2009) MicroRNAs—the micro steering wheel of tumour metastases. Nat Rev Cancer 9(4):293–302CrossRefPubMedGoogle Scholar
  18. 18.
    Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N, Nabae T, Takahata S, Toma H, Nagai E, Tanaka M (2009) MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther 8(5):1067–1074CrossRefPubMedGoogle Scholar
  19. 19.
    Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M (2008) Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 377(1):114–119CrossRefPubMedGoogle Scholar
  20. 20.
    Feng B, Wang R, Song HZ, Chen LB (2012) MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3. Cancer 118(13):3365–3376CrossRefPubMedGoogle Scholar
  21. 21.
    Bruns CJ, Harbison MT, Kuniyasu H, Eue I, Fidler IJ (1999) In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia 1(1):50–62PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806CrossRefPubMedGoogle Scholar
  23. 23.
    Reddy KL, Zullo JM, Bertolino E, Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452(7184):243–247CrossRefPubMedGoogle Scholar
  24. 24.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA, Farace MG (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282(32):23716–23724CrossRefPubMedGoogle Scholar
  26. 26.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033CrossRefPubMedGoogle Scholar
  27. 27.
    Park JK, Lee EJ, Esau C, Schmittgen TD (2009) Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38(7):e190–e199CrossRefPubMedGoogle Scholar
  28. 28.
    Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardiere C, Bennouna J, Bachet JB, Khemissa-Akouz F, Pere-Verge D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Ducreux M (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364(19):1817–1825CrossRefPubMedGoogle Scholar
  29. 29.
    Du Z, Qin R, Wei C, Wang M, Shi C, Tian R, Peng C (2011) Pancreatic cancer cells resistant to chemoradiotherapy rich in “stem-cell-like” tumor cells. Dig Dis Sci 56(3):741–750CrossRefPubMedGoogle Scholar
  30. 30.
    Luo G, Long J, Cui X, Xiao Z, Liu Z, Shi S, Liu L, Liu C, Xu J, Li M, Yu X (2013) Highly lymphatic metastatic pancreatic cancer cells possess stem cell-like properties. Int J Oncol 42(3):979–984PubMedGoogle Scholar
  31. 31.
    Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45(8):872–877CrossRefPubMedGoogle Scholar
  32. 32.
    Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355CrossRefPubMedGoogle Scholar
  33. 33.
    Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123(4):631–640CrossRefPubMedGoogle Scholar
  34. 34.
    Kasinski AL, Slack FJ (2011) Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11(12):849–864PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Kuehbacher A, Urbich C, Dimmeler S (2008) Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci 29(1):12–15CrossRefPubMedGoogle Scholar
  36. 36.
    Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79(4):581–588CrossRefPubMedGoogle Scholar
  37. 37.
    Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ, Schmittgen TD (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120(5):1046–1054PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453(7192):223–227PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803CrossRefPubMedGoogle Scholar
  40. 40.
    Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ, Hou JH, Fu J, Zeng MS, Yun JP, Wu QL, Zeng YX, Shao JY (2011) Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res 13(1):R2PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Huang TH, Wu F, Loeb GB, Hsu R, Heidersbach A, Brincat A, Horiuchi D, Lebbink RJ, Mo YY, Goga A, McManus MT (2009) Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem 284(27):18515–18524PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Li Y, VandenBoom TG 2nd, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69(16):6704–6712PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Zhao Y, Bao Q, Schwarz B, Zhao L, Mysliwietz J, Ellwart J, Renner A, Hirner H, Niess H, Camaj P, Angele M, Gros S, Izbicki J, Jauch KW, Nelson PJ, Bruns CJ (2014) Stem cell-like side populations in esophageal cancer: a source of chemotherapy resistance and metastases. Stem Cells Dev 23(2):180–192CrossRefPubMedGoogle Scholar
  44. 44.
    Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A, Banerjee S, Azmi AS, Miele L, Sarkar FH (2011) Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett 307(1):26–36PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Han M, Liu M, Wang Y, Chen X, Xu J, Sun Y, Zhao L, Qu H, Fan Y, Wu C (2012) Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One 7(6):e39520PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Han M, Wang Y, Liu M, Bi X, Bao J, Zeng N, Zhu Z, Mo Z, Wu C, Chen X (2012) MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1alpha expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci 103(6):1058–1064CrossRefPubMedGoogle Scholar
  47. 47.
    Hulsmans M, Geeraert B, De Keyzer D, Mertens A, Lannoo M, Vanaudenaerde B, Hoylaerts M, Benhabiles N, Tsatsanis C, Mathieu C, Holvoet P (2012) Interleukin-1 receptor-associated kinase-3 is a key inhibitor of inflammation in obesity and metabolic syndrome. PLoS One 7(1):e30414PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Ying J, Li H, Cui Y, Wong AH, Langford C, Tao Q (2006) Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia 20(6):1173–1175CrossRefPubMedGoogle Scholar
  49. 49.
    Ryu JK, Matthaei H, Dal Molin M, Hong SM, Canto MI, Schulick RD, Wolfgang C, Goggins MG, Hruban RH, Cope L, Maitra A (2011) Elevated microRNA miR-21 levels in pancreatic cyst fluid are predictive of mucinous precursor lesions of ductal adenocarcinoma. Pancreatology 11(3):343–350PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yue Zhao
    • 1
    Email author
  • Lu Zhao
    • 2
  • Ivan Ischenko
    • 2
  • Qi Bao
    • 2
  • Bettina Schwarz
    • 2
  • Hanno Nieß
    • 2
  • Yan Wang
    • 1
  • Andrea Renner
    • 2
  • Josef Mysliwietz
    • 4
  • Karl-Walter Jauch
    • 2
  • Peter J. Nelson
    • 3
  • Joachim W. Ellwart
    • 4
  • Christiane J. Bruns
    • 1
  • Peter Camaj
    • 1
    Email author
  1. 1.Department of General, Visceral und Vascular SurgeryOtto-von-Guericke UniversityMagdeburgGermany
  2. 2.Department of General, Visceral und Vascular SurgeryUniversity of MunichMunichGermany
  3. 3.Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IVUniversity of MunichMunichGermany
  4. 4.Institute of Molecular Immunology, Helmholtz Center MunichMunichGermany

Personalised recommendations