Skip to main content
Log in

Targeting epidermal growth factor receptors and downstream signaling pathways in cancer by phytochemicals

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Epidermal growth factor receptors (EGFR, HER2, HER3) activate signal transduction pathways involved in cancer proliferation, apoptosis, differentiation, metastasis, and angiogenesis. Their overexpression and activation are associated with unfavorable prognosis of cancer patients. Therefore, they are attractive targets for cancer therapy. Due to the development of drug resistance, therapeutic monoclonal antibodies and synthetic small molecule tyrosine kinase inhibitors directed against EGFR family members may fail with fatal consequences for cancer patients. Medicinal plants raised considerable interest during the past years as valuable resources to develop novel treatment therapies targeting epidermal growth factor receptors and their downstream signal transduction pathways. The present review gives an overview of isolated phytochemicals that inhibit these signaling routes. Inhibitors have been described that down-regulate the mRNA or protein expression of EGFR, HER2, or HER3 or inhibit the phosphorylation of these receptors and/or their downstream signaling kinases. Remarkably, a wealth of in vivo experiments complemented in vitro data, indicating that natural products are also active in living animals bringing this research concept closer to clinical applicability. The combination of receptor-inhibiting natural product with standard anticancer drugs frequently caused increased or even synergistic tumor inhibition in vitro and in vivo. It deserves further evaluation, if and how epidermal growth factor receptor-targeting natural products can be integrated into clinical oncology as well as to define their role for more tumor-specific and individualized tumor therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ART:

Artesunate

CET:

Cephalotaxine

EGFR:

Epidermal growth factor receptor

GBM:

Glioblastoma multiforme

HER:

Human epidermal growth factor receptor

HHT:

Homoharringtonine

NSCLC:

Non-small cell lung carcinoma

SCLC:

Small cell lung carcinoma

References

  1. Scagliotti GV, Selvaggi G, Novello S, Hirsch FR (2004) The biology of epidermal growth factor receptor in lung cancer. Clin Cancer Res 10:4227s–4232s

    Article  CAS  PubMed  Google Scholar 

  2. Riese DJ 2nd, van Raaij TM, Plowman GD, Andrews GC, Stern DF (1995) The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol Cell Biol 15:5770–5776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Beerli RR, Hynes NE (1996) Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J Biol Chem 271:6071–6076

    Article  CAS  PubMed  Google Scholar 

  4. Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Earp HS, Dawson TL, Li X, Yu H (1995) Heterodimerization and functional interaction between EGF receptor family members: a new signaling paradigm with implications for breast cancer research. Breast Cancer Res Treat 35:115–132

    Article  CAS  PubMed  Google Scholar 

  6. Oliveira S, van Bergen en Henegouwen PM, Storm G, Schiffelers RM (2006) Molecular biology of epidermal growth factor receptor inhibition for cancer therapy. Expert Opin Biol Ther 6:605–617

    Article  CAS  PubMed  Google Scholar 

  7. Astsaturov I, Cohen RB, Harari P (2006) Targeting epidermal growth factor receptor signaling in the treatment of head and neck cancer. Expert Rev Anticancer Ther 6:1179–1193

    Article  CAS  PubMed  Google Scholar 

  8. Perea S, Hidalgo M (2004) Predictors of sensitivity and resistance to epidermal growth factor receptor inhibitors. Clin Lung Cancer 6(Suppl 1):S30–S34

    Article  CAS  PubMed  Google Scholar 

  9. Efferth T, Volm M (1993) Reversal of doxorubicin-resistance in sarcoma 180 tumor cells by inhibition of different resistance mechanisms. Cancer Lett 70:197–202

    Article  CAS  PubMed  Google Scholar 

  10. Efferth T, Volm M (1992) Immunocytochemical detection of oncoproteins in animal and human tumor lines with acquired or inherent multidrug resistance. Cancer Detect Prev 16:237–243

    CAS  PubMed  Google Scholar 

  11. Volm M, Koomagi R, Efferth T (2004) Prediction of drug sensitivity and resistance of cancer by protein expression profiling. Cancer Genomics Proteomics 1:157–166

    CAS  Google Scholar 

  12. el-Deiry WS (1997) Role of oncogenes in resistance and killing by cancer therapeutic agents. Curr Opin Oncol 9:79–87

    Article  CAS  PubMed  Google Scholar 

  13. Volm M, Efferth T, Mattern J (1992) Oncoprotein (c-myc, c-erbB1, c-erbB2, c-fos) and suppressor gene product (p53) expression in squamous cell carcinomas of the lung. Clinical and biological correlations. Anticancer Res 12:11–20

    CAS  PubMed  Google Scholar 

  14. Efferth T, Volm M (2004) Protein expression profiles indicative for drug resistance of kidney carcinoma. Cancer Genomics Proteomics 1:17–22

    CAS  Google Scholar 

  15. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK et al (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333

    Article  CAS  PubMed  Google Scholar 

  16. Nagane M, Huang HJ, Cavenee WK (1997) Advances in the molecular genetics of gliomas. Curr Opin Oncol 9:215–222

    Article  CAS  PubMed  Google Scholar 

  17. Nagane M, Narita Y, Mishima K, Levitzki A, Burgess AW, Cavenee WK et al (2001) Human glioblastoma xenografts overexpressing a tumor-specific mutant epidermal growth factor receptor sensitized to cisplatin by the AG1478 tyrosine kinase inhibitor. J Neurosurg 95:472–479

    Article  CAS  PubMed  Google Scholar 

  18. Nagane M, Levitzki A, Gazit A, Cavenee WK, Huang HJ (1998) Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci U S A 95:5724–5729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK et al (2007) Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci U S A 104:12867–12872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Han J (1988) Traditional Chinese medicine and the search for new antineoplastic drugs. J Ethnopharmacol 24:1–17

    Article  CAS  PubMed  Google Scholar 

  21. Efferth T, Davey M, Olbrich A, Rucker G, Gebhart E, Davey R (2002) Activity of drugs from traditional Chinese medicine toward sensitive and MDR1- or MRP1-overexpressing multidrug-resistant human CCRF-CEM leukemia cells. Blood Cells Mol Dis 28:160–168

    Article  PubMed  Google Scholar 

  22. Efferth T, Sauerbrey A, Halatsch ME, Ross DD, Gebhart E (2003) Molecular modes of action of cephalotaxine and homoharringtonine from the coniferous tree Cephalotaxus hainanensis in human tumor cell lines. Naunyn Schmiedebergs Arch Pharmacol 367:56–67

    Article  CAS  PubMed  Google Scholar 

  23. Klayman DL (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Sci 228:1049–1055

    Article  CAS  Google Scholar 

  24. Efferth T (2007) Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of artemisinin—from bench to bedside. Planta Med 73:299–309

    Article  CAS  PubMed  Google Scholar 

  25. Efferth T, Giaisi M, Merling A, Krammer PH, Li-Weber M (2007) Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T leukemia cells. PLoS One 2:e693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Efferth T, Li PC, Konkimalla VS, Kaina B (2007) From traditional Chinese medicine to rational cancer therapy. Trends Mol Med 13:353–361

    Article  CAS  PubMed  Google Scholar 

  27. Mitsudomi T, Yatabe Y (2010) Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J 277:301–308

    Article  CAS  PubMed  Google Scholar 

  28. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  29. Volm M, Koomagi R, Mattern J, Efferth T (2002) Protein expression profiles indicative for drug resistance of non-small cell lung cancer. Br J Cancer 87:251–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Efferth T (2001) The human ATP-binding cassette transporter genes: from the bench to the bedside. Curr Mol Med 1:45–65

    Article  CAS  PubMed  Google Scholar 

  31. Efferth T, Volm M (2005) Pharmacogenetics for individualized cancer chemotherapy. Pharmacol Ther 107:155–176

    Article  CAS  PubMed  Google Scholar 

  32. Volm M, Koomagi R, Mattern J, Efferth T (2002) Expression profile of genes in non-small cell lung carcinomas from long-term surviving patients. Clin Cancer Res 8:1843–1848

    CAS  PubMed  Google Scholar 

  33. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132

    Article  CAS  PubMed  Google Scholar 

  34. Volm M, Kastel M, Mattern J, Efferth T (1993) Expression of resistance factors (P-glycoprotein, glutathione S-transferase-pi, and topoisomerase II) and their interrelationship to proto-oncogene products in renal cell carcinomas. Cancer 71:3981–3987

    Article  CAS  PubMed  Google Scholar 

  35. Earp HS 3rd, Calvo BF, Sartor CI (2003) The EGF receptor family—multiple roles in proliferation, differentiation, and neoplasia with an emphasis on HER4. Trans Am Clin Climatol Assoc 114:315–333, discussion 33–4

    PubMed Central  PubMed  Google Scholar 

  36. Menard S, Tagliabue E, Campiglio M, Pupa SM (2000) Role of HER2 gene overexpression in breast carcinoma. J Cell Physiol 182:150–162

    Article  CAS  PubMed  Google Scholar 

  37. Figueroa-Magalhaes MC, Jelovac D, Connolly RM, Wolff AC (2014) Treatment of HER2-positive breast cancer. Breast 23:128–136

    Article  PubMed Central  PubMed  Google Scholar 

  38. Kurebayashi J (2001) Biological and clinical significance of HER2 overexpression in breast cancer. Breast Cancer 8:45–51

    Article  CAS  PubMed  Google Scholar 

  39. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Sci 235:177–182

    Article  CAS  Google Scholar 

  40. Paik S, Hazan R, Fisher ER, Sass RE, Fisher B, Redmond C et al (1990) Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 8:103–112

    CAS  PubMed  Google Scholar 

  41. Koutras AK, Fountzilas G, Kalogeras KT, Starakis I, Iconomou G, Kalofonos HP (2010) The upgraded role of HER3 and HER4 receptors in breast cancer. Crit Rev Oncol Hematol 74:73–78

    Article  PubMed  Google Scholar 

  42. Srinivasan R, Gillett CE, Barnes DM, Gullick WJ (2000) Nuclear expression of the c-erbB-4/HER-4 growth factor receptor in invasive breast cancers. Cancer Res 60:1483–1487

    CAS  PubMed  Google Scholar 

  43. Suo Z, Risberg B, Kalsson MG, Willman K, Tierens A, Skovlund E et al (2002) EGFR family expression in breast carcinomas. c-erbB-2 and c-erbB-4 receptors have different effects on survival. J Pathol 196:17–25

    Article  CAS  PubMed  Google Scholar 

  44. Mendelsohn J (1997) Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin Cancer Res 3:2703–2707

    CAS  PubMed  Google Scholar 

  45. Roskoski R Jr (2014) ErbB/HER protein-tyrosine kinases: structures and small molecule inhibitors. Pharmacol Res 87C:42–59

    Article  CAS  Google Scholar 

  46. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  47. Efferth T, Koch E (2011) Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr Drug Targets 12:122–132

    Article  CAS  PubMed  Google Scholar 

  48. Wu J, Zuo F, Du J, Wong PF, Qin H, Xu J (2013) Icariside II induces apoptosis via inhibition of the EGFR pathways in A431 human epidermoid carcinoma cells. Mol Med Rep 8:597–602

    PubMed  Google Scholar 

  49. Du H, Xu B, Wu C, Li M, Ran F, Cai S et al (2012) Effects of CS-1 on A431 cell proliferation, cell cycle, and epidermal growth factor receptor signal transduction. Acta Biochim Biophys Sin (Shanghai) 44:136–146

    Article  CAS  Google Scholar 

  50. Kim S, Han J, Kim JS, Kim JH, Choe JH, Yang JH et al (2011) Silibinin suppresses EGFR ligand-induced CD44 expression through inhibition of EGFR activity in breast cancer cells. Anticancer Res 31:3767–3773

    CAS  PubMed  Google Scholar 

  51. Leeman-Neill RJ, Cai Q, Joyce SC, Thomas SM, Bhola NE, Neill DB et al (2010) Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors. Clin Cancer Res 16:2571–2579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Zhang YX, Chen Y, Guo XN, Zhang XW, Zhao WM, Zhong L et al (2005) 11,11′-Dideoxy-verticillin: a natural compound possessing growth factor receptor tyrosine kinase-inhibitory effect with anti-tumor activity. Anticancer Drugs 16:515–524

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Y, Zheng L, Zhang J, Dai B, Wang N, Chen Y et al (2011) Antitumor activity of taspine by modulating the EGFR signaling pathway of Erk1/2 and Akt in vitro and in vivo. Planta Med 77:1774–1781

    Article  CAS  PubMed  Google Scholar 

  54. Sun M, Ren J, Du H, Zhang Y, Zhang J, Wang S et al (2010) A combined A431 cell membrane chromatography and online high performance liquid chromatography/mass spectrometry method for screening compounds from total alkaloid of Radix caulophylli acting on the human EGFR. J Chromatogr B Analyt Technol Biomed Life Sci 878:2712–2718

    Article  CAS  PubMed  Google Scholar 

  55. Wang S, Sun M, Zhang Y, Du H, He L (2010) A new A431/cell membrane chromatography and online high performance liquid chromatography/mass spectrometry method for screening epidermal growth factor receptor antagonists from Radix sophorae flavescentis. J Chromatogr A 1217:5246–5252

    Article  CAS  PubMed  Google Scholar 

  56. Peterson G, Barnes S (1993) Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate 22:335–345

    Article  CAS  PubMed  Google Scholar 

  57. Peterson G, Barnes S (1996) Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells. Cell Growth Differ 7:1345–1351

    CAS  PubMed  Google Scholar 

  58. Yang EB, Wang DF, Mack P, Cheng LY (1996) Genistein, a tyrosine kinase inhibitor, reduces EGF-induced EGF receptor internalization and degradation in human hepatoma HepG2 cells. Biochem Biophys Res Commun 224:309–317

    Article  CAS  PubMed  Google Scholar 

  59. Theodorescu D, Laderoute KR, Calaoagan JM, Guilding KM (1998) Inhibition of human bladder cancer cell motility by genistein is dependent on epidermal growth factor receptor but not p21ras gene expression. Int J Cancer 78:775–782

    Article  CAS  PubMed  Google Scholar 

  60. Shao ZM, Wu J, Shen ZZ, Barsky SH (1998) Genistein inhibits both constitutive and EGF-stimulated invasion in ER-negative human breast carcinoma cell lines. Anticancer Res 18:1435–1439

    CAS  PubMed  Google Scholar 

  61. Salvatori L, Caporuscio F, Coroniti G, Starace G, Frati L, Russo MA et al (2009) Down-regulation of epidermal growth factor receptor induced by estrogens and phytoestrogens promotes the differentiation of U2OS human osteosarcoma cells. J Cell Physiol 220:35–44

    Article  CAS  PubMed  Google Scholar 

  62. Gadgeel SM, Ali S, Philip PA, Wozniak A, Sarkar FH (2009) Genistein enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitors and inhibits nuclear factor kappa B in nonsmall cell lung cancer cell lines. Cancer 115:2165–2176

    Article  CAS  PubMed  Google Scholar 

  63. El-Rayes BF, Ali S, Ali IF, Philip PA, Abbruzzese J, Sarkar FH (2006) Potentiation of the effect of erlotinib by genistein in pancreatic cancer: the role of Akt and nuclear factor-kappaB. Cancer Res 66:10553–10559

    Article  CAS  PubMed  Google Scholar 

  64. Shushan A, Ben-Bassat H, Mishani E, Laufer N, Klein BY, Rojansky N (2007) Inhibition of leiomyoma cell proliferation in vitro by genistein and the protein tyrosine kinase inhibitor TKS050. Fertil Steril 87:127–135

    Article  CAS  PubMed  Google Scholar 

  65. Nakamura H, Wang Y, Kurita T, Adomat H, Cunha GR (2011) Genistein increases epidermal growth factor receptor signaling and promotes tumor progression in advanced human prostate cancer. PLoS One 6:e20034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Oh HY, Leem J, Yoon SJ, Yoon S, Hong SJ (2010) Lipid raft cholesterol and genistein inhibit the cell viability of prostate cancer cells via the partial contribution of EGFR-Akt/p70S6k pathway and down-regulation of androgen receptor. Biochem Biophys Res Commun 393:319–324

    Article  CAS  PubMed  Google Scholar 

  67. Park SJ, Kim MJ, Kim YK, Kim SM, Park JY, Myoung H (2010) Combined cetuximab and genistein treatment shows additive anti-cancer effect on oral squamous cell carcinoma. Cancer Lett 292:54–63

    Article  CAS  PubMed  Google Scholar 

  68. Anastasius N, Boston S, Lacey M, Storing N, Whitehead SA (2009) Evidence that low-dose, long-term genistein treatment inhibits oestradiol-stimulated growth in MCF-7 cells by down-regulation of the PI3-kinase/Akt signalling pathway. J Steroid Biochem Mol Biol 116:50–55

    Article  CAS  PubMed  Google Scholar 

  69. Bhatia N, Agarwal R (2001) Detrimental effect of cancer preventive phytochemicals silymarin, genistein and epigallocatechin 3-gallate on epigenetic events in human prostate carcinoma DU145 cells. Prostate 46:98–107

    Article  CAS  PubMed  Google Scholar 

  70. Li D, Wu LJ, Tashiro S, Onodera S, Ikejima T (2007) Oridonin-induced A431 cell apoptosis partially through blockage of the Ras/Raf/ERK signal pathway. J Pharmacol Sci 103:56–66

    Article  CAS  PubMed  Google Scholar 

  71. Liang YC, Lin-shiau SY, Chen CF, Lin JK (1997) Suppression of extracellular signals and cell proliferation through EGF receptor binding by (−)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J Cell Biochem 67:55–65

    Article  CAS  PubMed  Google Scholar 

  72. Masuda M, Suzui M, Weinstein IB (2001) Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res 7:4220–4229

    CAS  PubMed  Google Scholar 

  73. Sah JF, Balasubramanian S, Eckert RL, Rorke EA (2004) Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases. J Biol Chem 279:12755–12762

    Article  CAS  PubMed  Google Scholar 

  74. Zhang X, Zhang H, Tighiouart M, Lee JE, Shin HJ, Khuri FR et al (2008) Synergistic inhibition of head and neck tumor growth by green tea (−)-epigallocatechin-3-gallate and EGFR tyrosine kinase inhibitor. Int J Cancer 123:1005–1014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Adachi S, Nagao T, To S, Joe AK, Shimizu M, Matsushima-Nishiwaki R et al (2008) (−)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinog 29:1986–1993

    Article  CAS  Google Scholar 

  76. Adachi S, Shimizu M, Shirakami Y, Yamauchi J, Natsume H, Matsushima-Nishiwaki R et al (2009) (−)-Epigallocatechin gallate downregulates EGF receptor via phosphorylation at Ser1046/1047 by p38 MAPK in colon cancer cells. Carcinog 30:1544–1552

    Article  CAS  Google Scholar 

  77. Milligan SA, Burke P, Coleman DT, Bigelow RL, Steffan JJ, Carroll JL et al (2009) The green tea polyphenol EGCG potentiates the antiproliferative activity of c-Met and epidermal growth factor receptor inhibitors in non-small cell lung cancer cells. Clin Cancer Res 15:4885–4894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Lim YC, Cha YY (2011) Epigallocatechin-3-gallate induces growth inhibition and apoptosis of human anaplastic thyroid carcinoma cells through suppression of EGFR/ERK pathway and cyclin B1/CDK1 complex. J Surg Oncol 104:776–780

    Article  CAS  PubMed  Google Scholar 

  79. Chang CM, Chang PY, Tu MG, Lu CC, Kuo SC, Amagaya S et al (2012) Epigallocatechin gallate sensitizes CAL-27 human oral squamous cell carcinoma cells to the anti-metastatic effects of gefitinib (Iressa) via synergistic suppression of epidermal growth factor receptor and matrix metalloproteinase-2. Oncol Rep 28:1799–1807

    CAS  PubMed  Google Scholar 

  80. Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB (2005) (−)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res 11:2735–2746

    Article  CAS  PubMed  Google Scholar 

  81. Hou Z, Sang S, You H, Lee MJ, Hong J, Chin KV et al (2005) Mechanism of action of (−)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res 65:8049–8056

    Article  CAS  PubMed  Google Scholar 

  82. Pal HC, Sharma S, Strickland LR, Agarwal J, Athar M, Elmets CA et al (2013) Delphinidin reduces cell proliferation and induces apoptosis of non-small-cell lung cancer cells by targeting EGFR/VEGFR2 signaling pathways. PLoS One 8:e77270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Fridrich D, Teller N, Esselen M, Pahlke G, Marko D (2008) Comparison of delphinidin, quercetin and (−)-epigallocatechin-3-gallate as inhibitors of the EGFR and the ErbB2 receptor phosphorylation. Mol Nutr Food Res 52:815–822

    Article  CAS  PubMed  Google Scholar 

  84. Singh F, Gao D, Lebwohl MG, Wei H (2003) Shikonin modulates cell proliferation by inhibiting epidermal growth factor receptor signaling in human epidermoid carcinoma cells. Cancer Lett 200:115–121

    Article  CAS  PubMed  Google Scholar 

  85. Hashimoto S, Xu Y, Masuda Y, Aiuchi T, Nakajo S, Uehara Y et al (2002) Beta-hydroxyisovalerylshikonin is a novel and potent inhibitor of protein tyrosine kinases. Jpn J Cancer Res 93:944–951

    Article  CAS  PubMed  Google Scholar 

  86. Soung YH, Chung J (2011) Curcumin inhibition of the functional interaction between integrin alpha6beta4 and the epidermal growth factor receptor. Mol Cancer Ther 10:883–891

    Article  CAS  PubMed  Google Scholar 

  87. Lee JY, Lee YM, Chang GC, Yu SL, Hsieh WY, Chen JJ et al (2011) Curcumin induces EGFR degradation in lung adenocarcinoma and modulates p38 activation in intestine: the versatile adjuvant for gefitinib therapy. PLoS One 6:e23756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Wang S, Yu S, Shi W, Ge L, Yu X, Fan J et al (2011) Curcumin inhibits the migration and invasion of mouse hepatoma Hca-F cells through down-regulating caveolin-1 expression and epidermal growth factor receptor signaling. IUBMB Life 63:775–782

    Article  CAS  PubMed  Google Scholar 

  89. Jiang AP, Zhou DH, Meng XL, Zhang AP, Zhang C, Li XT et al (2014) Down-regulation of epidermal growth factor receptor by curcumin-induced UBE1L in human bronchial epithelial cells. J Nutr Biochem 25:241–249

    Article  PubMed  CAS  Google Scholar 

  90. Li S, Liu Z, Zhu F, Fan X, Wu X, Zhao H et al (2014) Curcumin lowers erlotinib resistance in non-small cell lung carcinoma cells with mutated EGF receptor. Oncol Res 21:137–144

    Article  CAS  Google Scholar 

  91. Chadalapaka G, Jutooru I, Burghardt R, Safe S (2010) Drugs that target specificity proteins downregulate epidermal growth factor receptor in bladder cancer cells. Mol Cancer Res 8:739–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Hung CM, Su YH, Lin HY, Lin JN, Liu LC, Ho CT et al (2012) Demethoxycurcumin modulates prostate cancer cell proliferation via AMPK-induced down-regulation of HSP70 and EGFR. J Agric Food Chem 60:8427–8434

    Article  CAS  PubMed  Google Scholar 

  93. Qiu P, Xu L, Gao L, Zhang M, Wang S, Tong S et al (2013) Exploring pyrimidine-substituted curcumin analogues: design, synthesis and effects on EGFR signaling. Bioorg Med Chem 21:5012–5020

    Article  CAS  PubMed  Google Scholar 

  94. Castillo-Pichardo L, Dharmawardhane SF (2012) Grape polyphenols inhibit Akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer. Nutr Cancer 64:1058–1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Lee MF, Pan MH, Chiou YS, Cheng AC, Huang H (2011) Resveratrol modulates MED28 (Magicin/EG-1) expression and inhibits epidermal growth factor (EGF)-induced migration in MDA-MB-231 human breast cancer cells. J Agric Food Chem 59:11853–11861

    Article  CAS  PubMed  Google Scholar 

  96. Wang Y, Romigh T, He X, Orloff MS, Silverman RH, Heston WD et al (2010) Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines. Hum Mol Genet 19:4319–4329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Stewart JR, O’Brian CA (2004) Resveratrol antagonizes EGFR-dependent Erk1/2 activation in human androgen-independent prostate cancer cells with associated isozyme-selective PKC alpha inhibition. Invest New Drugs 22:107–117

    Article  CAS  PubMed  Google Scholar 

  98. Qiu L, Wang Q, Di W, Jiang Q, Schefeller E, Derby S et al (2005) Transient activation of EGFR/AKT cell survival pathway and expression of survivin contribute to reduced sensitivity of human melanoma cells to betulinic acid. Int J Oncol 27:823–830

    CAS  PubMed  Google Scholar 

  99. Teller N, Roth M, Esselen M, Fridrich D, Boettler U, Blust V et al (2013) Apple procyanidins affect several members of the ErbB receptor tyrosine kinase family in vitro. Food Funct 4:689–697

    Article  CAS  PubMed  Google Scholar 

  100. Huang CY, Chan CY, Chou IT, Lien CH, Hung HC, Lee MF (2013) Quercetin induces growth arrest through activation of FOXO1 transcription factor in EGFR-overexpressing oral cancer cells. J Nutr Biochem 24:1596–1603

    Article  PubMed  CAS  Google Scholar 

  101. Senthilkumar K, Arunkumar R, Elumalai P, Sharmila G, Gunadharini DN, Banudevi S et al (2011) Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochem Funct 29:87–95

    Article  CAS  PubMed  Google Scholar 

  102. Jung JH, Lee JO, Kim JH, Lee SK, You GY, Park SH et al (2010) Quercetin suppresses HeLa cell viability via AMPK-induced HSP70 and EGFR down-regulation. J Cell Physiol 223:408–414

    CAS  PubMed  Google Scholar 

  103. Raspaglio G, Ferrandina G, Ferlini C, Scambia G, Ranelletti FO (2003) Epidermal growth factor-responsive laryngeal squamous cancer cell line Hep2 is more sensitive than unresponsive CO-K3 one to quercetin and tamoxifen apoptotic effects. Oncol Res 14:83–91

    CAS  PubMed  Google Scholar 

  104. Lee LT, Huang YT, Hwang JJ, Lee AY, Ke FC, Huang CJ et al (2004) Transinactivation of the epidermal growth factor receptor tyrosine kinase and focal adhesion kinase phosphorylation by dietary flavonoids: effect on invasive potential of human carcinoma cells. Biochem Pharmacol 67:2103–2114

    Article  CAS  PubMed  Google Scholar 

  105. Lee LT, Huang YT, Hwang JJ, Lee PP, Ke FC, Nair MP et al (2002) Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res 22:1615–1627

    CAS  PubMed  Google Scholar 

  106. Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ et al (1999) Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol 128:999–1010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Richter M, Ebermann R, Marian B (1999) Quercetin-induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling. Nutr Cancer 34:88–99

    Article  CAS  PubMed  Google Scholar 

  108. Mehta R, Katta H, Alimirah F, Patel R, Murillo G, Peng X et al (2013) Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells. PLoS One 8:e65113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Kern M, Tjaden Z, Ngiewih Y, Puppel N, Will F, Dietrich H et al (2005) Inhibitors of the epidermal growth factor receptor in apple juice extract. Mol Nutr Food Res 49:317–328

    Article  CAS  PubMed  Google Scholar 

  110. Prasad R, Katiyar SK (2012) Bioactive phytochemical proanthocyanidins inhibit growth of head and neck squamous cell carcinoma cells by targeting multiple signaling molecules. PLoS One 7:e46404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Lee EJ, Oh SY, Sung MK (2012) Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem Toxicol 50:4136–4143

    Article  CAS  PubMed  Google Scholar 

  112. Lee DE, Lee KW, Song NR, Seo SK, Heo YS, Kang NJ et al (2010) 7,3′,4′-Trihydroxyisoflavone inhibits epidermal growth factor-induced proliferation and transformation of JB6 P+ mouse epidermal cells by suppressing cyclin-dependent kinases and phosphatidylinositol 3-kinase. J Biol Chem 285:21458–21466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Ma H, Yao Q, Zhang AM, Lin S, Wang XX, Wu L et al (2011) The effects of artesunate on the expression of EGFR and ABCG2 in A549 human lung cancer cells and a xenograft model. Mol 16:10556–10569

    Article  Google Scholar 

  114. Chun J, Kim YS (2013) Platycodin D inhibits migration, invasion, and growth of MDA-MB-231 human breast cancer cells via suppression of EGFR-mediated Akt and MAPK pathways. Chem Biol Interact 205:212–221

    Article  CAS  PubMed  Google Scholar 

  115. Wang L, Cao H, Lu N, Liu L, Wang B, Hu T et al (2013) Berberine inhibits proliferation and down-regulates epidermal growth factor receptor through activation of Cbl in colon tumor cells. PLoS One 8:e56666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Thoennissen NH, O’Kelly J, Lu D, Iwanski GB, La DT, Abbassi S et al (2010) Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene 29:285–296

    Article  CAS  PubMed  Google Scholar 

  117. Zhou NN, Tang J, Chen WD, Feng GK, Xie BF, Liu ZC et al (2012) Houttuyninum, an active constituent of Chinese herbal medicine, inhibits phosphorylation of HER2/neu receptor tyrosine kinase and the tumor growth of HER2/neu-overexpressing cancer cells. Life Sci 90:770–775

    Article  CAS  PubMed  Google Scholar 

  118. Guo XN, Zhong L, Zhang XH, Zhao WM, Zhang XW, Lin LP et al (2004) Evaluation of active recombinant catalytic domain of human ErbB-2 tyrosine kinase, and suppression of activity by a naturally derived inhibitor, ZH-4B. Biochim Biophys Acta 1673:186–193

    Article  CAS  PubMed  Google Scholar 

  119. Sakla MS, Shenouda NS, Ansell PJ, Macdonald RS, Lubahn DB (2007) Genistein affects HER2 protein concentration, activation, and promoter regulation in BT-474 human breast cancer cells. Endocr 32:69–78

    Article  CAS  Google Scholar 

  120. Li Y, Mi C, Wu YZ, Yang SF, Yang ZQ (2004) [The effects of genistein on epidermal growth factor receptor mediated signal transduction pathway in human ovarian carcinoma cells lines SKOV3 and its xenograft in nude mice]. Zhonghua Bing Li Xue Za Zhi 33:546–549

    PubMed  Google Scholar 

  121. Seo HS, Choi HS, Choi YK, Um JY, Choi I, Shin YC et al (2011) Phytoestrogens induce apoptosis via extrinsic pathway, inhibiting nuclear factor-kappaB signaling in HER2-overexpressing breast cancer cells. Anticancer Res 31:3301–3313

    CAS  PubMed  Google Scholar 

  122. Pan MH, Lin CC, Lin JK, Chen WJ (2007) Tea polyphenol (−)-epigallocatechin 3-gallate suppresses heregulin-beta1-induced fatty acid synthase expression in human breast cancer cells by inhibiting phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase cascade signaling. J Agric Food Chem 55:5030–5037

    Article  CAS  PubMed  Google Scholar 

  123. Kushima Y, Iida K, Nagaoka Y, Kawaratani Y, Shirahama T, Sakaguchi M et al (2009) Inhibitory effect of (−)-epigallocatechin and (−)-epigallocatechin gallate against heregulin beta1-induced migration/invasion of the MCF-7 breast carcinoma cell line. Biol Pharm Bull 32:899–904

    Article  CAS  PubMed  Google Scholar 

  124. Pianetti S, Guo S, Kavanagh KT, Sonenshein GE (2002) Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells. Cancer Res 62:652–655

    CAS  PubMed  Google Scholar 

  125. Masuda M, Suzui M, Lim JT, Weinstein IB (2003) Epigallocatechin-3-gallate inhibits activation of HER-2/neu and downstream signaling pathways in human head and neck and breast carcinoma cells. Clin Cancer Res 9:3486–3491

    CAS  PubMed  Google Scholar 

  126. Shimizu M, Deguchi A, Joe AK, McKoy JF, Moriwaki H, Weinstein IB (2005) EGCG inhibits activation of HER3 and expression of cyclooxygenase-2 in human colon cancer cells. J Exp Ther Oncol 5:69–78

    PubMed  Google Scholar 

  127. Patel BB, Sengupta R, Qazi S, Vachhani H, Yu Y, Rishi AK et al (2008) Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR and IGF-1R. Int J Cancer 122:267–273

    Article  CAS  PubMed  Google Scholar 

  128. Patel BB, Gupta D, Elliott AA, Sengupta V, Yu Y, Majumdar AP (2010) Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R. Anticancer Res 30:319–325

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Sun SH, Huang HC, Huang C, Lin JK (2012) Cycle arrest and apoptosis in MDA-MB-231/Her2 cells induced by curcumin. Eur J Pharmacol 690:22–30

    Article  CAS  PubMed  Google Scholar 

  130. Catania A, Barrajon-Catalan E, Nicolosi S, Cicirata F, Micol V (2013) Immunoliposome encapsulation increases cytotoxic activity and selectivity of curcumin and resveratrol against HER2 overexpressing human breast cancer cells. Breast Cancer Res Treat 141:55–65

    Article  CAS  PubMed  Google Scholar 

  131. Meiyanto E, Putri DD, Susidarti RA, Murwanti R, Sardjiman, Fitriasari A et al (2014) Curcumin and its analogues (PGV-0 and PGV-1) enhance sensitivity of resistant MCF-7 cells to doxorubicin through inhibition of HER2 and NF-kB activation. Asian Pac J Cancer Prev 15:179–184

    Article  PubMed  Google Scholar 

  132. Pan MH, Lin YT, Lin CL, Wei CS, Ho CT, Chen WJ (2011) Suppression of Heregulin-beta1/HER2-modulated invasive and aggressive phenotype of breast carcinoma by pterostilbene via inhibition of matrix metalloproteinase-9, p38 kinase cascade and Akt activation. Evid Based Complement Alternat Med 2011:562187

    PubMed Central  PubMed  Google Scholar 

  133. Huynh H, Nguyen TT, Chan E, Tran E (2003) Inhibition of ErbB-2 and ErbB-3 expression by quercetin prevents transforming growth factor alpha (TGF-alpha)- and epidermal growth factor (EGF)-induced human PC-3 prostate cancer cell proliferation. Int J Oncol 23:821–829

    CAS  PubMed  Google Scholar 

  134. Way TD, Kao MC, Lin JK (2004) Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 279:4479–4489

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Efferth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadioglu, O., Cao, J., Saeed, M.E.M. et al. Targeting epidermal growth factor receptors and downstream signaling pathways in cancer by phytochemicals. Targ Oncol 10, 337–353 (2015). https://doi.org/10.1007/s11523-014-0339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-014-0339-4

Keywords

Navigation