Targeted Oncology

, Volume 10, Issue 2, pp 189–198 | Cite as

Angiogenesis and tumor microenvironment: bevacizumab in the breast cancer model

  • Olivier TrédanEmail author
  • Magali Lacroix-Triki
  • Séverine Guiu
  • Marie-Ange Mouret-Reynier
  • Jérôme Barrière
  • François-Clément Bidard
  • Antoine-Laurent Braccini
  • Olivier Mir
  • Christian Villanueva
  • Philippe Barthélémy


Solid tumors require blood vessels for growth, and many new cancer therapies are directed against the tumor vasculature. Antiangiogenic therapies should destroy the tumor vasculature, thereby depriving the tumor of oxygen and nutrients. According to Jain et al., an alternative hypothesis could be that certain antiangiogenic agents can also transiently “normalize” the abnormal structure and function of tumor vasculature to make it more efficient for oxygen and drug delivery. With emphasize on the research works of Jain et al., the aim of this review is to describe the impact of antivascular endothelial growth factor (VEGF) therapy on “pseudo-normalization” of tumor vasculature and tumor microenvironment, its role in early and metastatic breast cancer, and the clinical evidence supporting this original concept. The phase III clinical trials showed that extended tumors, metastatic or locally advanced, are likely to benefit from bevacizumab therapy in combination with chemotherapy, assuming that a high level of tumor neoangiogenesis as in triple-negative tumors is the best target. In adjuvant setting, the lower level of tumor vasculature could mask a potential benefit of anti-VEGF therapy. All these findings highlight the need to identify biomarkers to help in the selection of patients most likely to respond to anti-VEGF therapy, to better understand the mechanism of angiogenesis and of resistance to anti-VEGF therapy according to molecular subtypes.


Angiogenesis Bevacizumab Breast cancer Tumor microenvironment 



The authors thank Isabelle Chapelle-Marcillac for her assistance in the medical writing.

Conflict of interest

All the authors received personal fees for the article from Laboratoires Roche France. Laboratoires Roche France supports the medical writing. Olivier Trédan received consulting fees from Roche, France.


  1. 1.
    Jain RK (1988) Determinants of tumor blood flow: a review. Cancer Res 48:2641–2658PubMedGoogle Scholar
  2. 2.
    Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D (2003) Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev 29:297–307PubMedCrossRefGoogle Scholar
  3. 3.
    Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443PubMedCrossRefGoogle Scholar
  4. 4.
    Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384PubMedGoogle Scholar
  5. 5.
    Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482PubMedCrossRefGoogle Scholar
  6. 6.
    Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Hashizume H, Baluk P, Morikawa S et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Semenza GL (2010) Oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med 2:336–361PubMedCrossRefGoogle Scholar
  9. 9.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedCrossRefGoogle Scholar
  10. 10.
    Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20:4368–4380PubMedCrossRefGoogle Scholar
  11. 11.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936PubMedCrossRefGoogle Scholar
  12. 12.
    Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835PubMedCrossRefGoogle Scholar
  13. 13.
    Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454PubMedCrossRefGoogle Scholar
  14. 14.
    Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Yanagisawa M, Yorozu K, Kurasawa M et al (2010) Bevacizumab improves the delivery and efficacy of paclitaxel. Anticancer Drugs 21:687–694PubMedGoogle Scholar
  17. 17.
    Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989PubMedCrossRefGoogle Scholar
  18. 18.
    Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112:1142–1151PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Inai T, Mancuso M, Hashizume H et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:3731–3736PubMedCrossRefGoogle Scholar
  21. 21.
    Greenberg JI, Shields DJ, Barillas SG et al (2008) A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456:809–813PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563PubMedGoogle Scholar
  23. 23.
    Kamoun WS, Chae SS, Lacorre DA et al (2010) Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nat Methods 7:655–660PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62PubMedCrossRefGoogle Scholar
  25. 25.
    Boucher Y, Jain RK (1992) Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 52:5110–5114PubMedGoogle Scholar
  26. 26.
    Roh HD, Boucher Y, Kalnicki S, Buchsbaum R, Bloomer WD, Jain RK (1991) Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation response. Cancer Res 51:6695–6698PubMedGoogle Scholar
  27. 27.
    Less JR, Posner MC, Boucher Y, Borochovitz D, Wolmark N, Jain RK (1992) Interstitial hypertension in human breast and colorectal tumors. Cancer Res 52:6371–6374PubMedGoogle Scholar
  28. 28.
    Leunig M, Goetz AE, Dellian M, Zetterer G, Gamarra F, Jain RK, Messmer K (1992) Interstitial fluid pressure in solid tumors following hyperthermia: possible correlation with therapeutic response. Cancer Res 52:487–490PubMedGoogle Scholar
  29. 29.
    Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK (2004) Pathology: cancer cells compress intratumour vessels. Nature 427:695PubMedCrossRefGoogle Scholar
  30. 30.
    Teicher BA, Holden SA, Ara G, Korbut T, Menon K (1996) Comparison of several antiangiogenic regimens alone and with cytotoxic therapies in the Lewis lung carcinoma. Cancer Chemother Pharmacol 38:169–177PubMedCrossRefGoogle Scholar
  31. 31.
    Bottsford-Miller JN, Coleman RL, Sood AK (2012) Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. J Clin Oncol 30:4026–4034PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Uzzan B, Nicolas P, Cucherat M, Perret GY (2004) Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 64:2941–2955PubMedCrossRefGoogle Scholar
  33. 33.
    Rau KM, Huang CC, Chiu TJ et al (2012) Neovascularization evaluated by CD105 correlates well with prognostic factors in breast cancers. Exp Ther Med 4:231–236PubMedCentralPubMedGoogle Scholar
  34. 34.
    Tanaka F, Otake Y, Yanagihara K et al (2001) Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD105 antibody. Clin Cancer Res 7:3410–3415PubMedGoogle Scholar
  35. 35.
    Fonsatti E, Del Vecchio L, Altomonte M et al (2001) Endoglin: an accessory component of the TGF-beta-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J Cell Physiol 188:1–7PubMedCrossRefGoogle Scholar
  36. 36.
    Kumar S, Ghellal A, Li C, Byrne G, Haboubi N, Wang JM, Bundred N (1999) Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res 59:856–861PubMedGoogle Scholar
  37. 37.
    Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324:1–8PubMedCrossRefGoogle Scholar
  38. 38.
    Weidner N, Folkman J, Pozza F et al (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84:1875–1887PubMedCrossRefGoogle Scholar
  39. 39.
    Gasparini G, Toi M, Gion M et al (1997) Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 89:139–147PubMedCrossRefGoogle Scholar
  40. 40.
    Hansen S, Grabau DA, Sørensen FB, Bak M, Vach W, Rose C (2000) The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients. Clin Cancer Res 6:139–146PubMedGoogle Scholar
  41. 41.
    Kostopoulos I, Arapantoni-Dadioti P, Gogas H et al (2006) Evaluation of the prognostic value of HER-2 and VEGF in breast cancer patients participating in a randomized study with dose-dense sequential adjuvant chemotherapy. Breast Cancer Res Treat 96:251–261PubMedCrossRefGoogle Scholar
  42. 42.
    Manders P, Beex LV, Tjan-Heijnen VC, Geurts-Moespot J, Van Tienoven TH, Foekens JA, Sweep CG (2002) The prognostic value of vascular endothelial growth factor in 574 node-negative breast cancer patients who did not receive adjuvant systemic therapy. Br J Cancer 87:772–778PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Linderholm B, Bergqvist J, Hellborg H (2009) Shorter survival-times following adjuvant endocrine therapy in oestrogen- and progesterone-receptor positive breast cancer overexpressing HER2 and/or with an increased expression of vascular endothelial growth factor. Med Oncol 26:480–490PubMedCrossRefGoogle Scholar
  44. 44.
    Bando H, Weich HA, Brokelmann M, Horiguchi S, Funata N, Ogawa T, Toi M (2005) Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer. Br J Cancer 92:553–561PubMedCentralPubMedGoogle Scholar
  45. 45.
    Ribeiro-Silva A, Ribeiro do Vale F, Zucoloto S (2006) Vascular endothelial growth factor expression in the basal subtype of breast carcinoma. Am J Clin Pathol 125:512–518PubMedCrossRefGoogle Scholar
  46. 46.
    Liu Y, Tamimi RM, Collins LC, Schnitt SJ, Gilmore HL, Connolly JL, Colditz GA (2011) The association between vascular endothelial growth factor expression in invasive breast cancer and survival varies with intrinsic subtypes and use of adjuvant systemic therapy: results from the nurses’ health study. Breast Cancer Res Treat 129:175–184PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Nalwoga H, Arnes JB, Stefansson IM, Wabinga H, Foulkes WD, Akslen LA (2011) Vascular proliferation is increased in basal-like breast cancer. Breast Cancer Res Treat 130:1063–1071PubMedCrossRefGoogle Scholar
  48. 48.
    Linderholm BK, Hellborg H, Johansson U, Elmberger G, Skoog L, Lehtiö J, Lewensohn R (2009) Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer. Ann Oncol 20:1639–1646PubMedCrossRefGoogle Scholar
  49. 49.
    Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676PubMedCrossRefGoogle Scholar
  50. 50.
    Miles DW, Chan A, Dirix LY et al (2010) Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28:3239–3247PubMedCrossRefGoogle Scholar
  51. 51.
    Robert NJ, Diéras V, Glaspy J et al (2011) RIBBON-1: randomized, double-blind placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29:1252–1260PubMedCrossRefGoogle Scholar
  52. 52.
    Rossari JR, Metzger-Filho O, Paesmans M, Saini KS, Gennari A, de Azambuja E, Piccart-Gebhart M (2012) Bevacizumab and breast cancer: a meta-analysis of first-line phase III studies and a critical reappraisal of available evidence. J Oncol 2012:417673PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Griffon-Etienne G, Boucher Y, Brekken C, Suit HD, Jain RK (1999) Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res 59:3776–3782PubMedGoogle Scholar
  54. 54.
    Lang I, Brodowicz T, Ryvo L et al (2013) Bevacizumab plus paclitaxel versus bevacizumab plus capecitabine as first-line treatment for HER2-negative metastatic breast cancer: interim efficacy results of the randomised, open-label, non-inferiority, phase 3 TURANDOT trial. Lancet Oncol 14:125–133PubMedCrossRefGoogle Scholar
  55. 55.
    Gianni L, Romieu GH, Lichinitser M et al (2013) AVEREL: a randomized phase III Trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J Clin Oncol 31:1719–1725PubMedCrossRefGoogle Scholar
  56. 56.
    Miller KD, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799PubMedCrossRefGoogle Scholar
  57. 57.
    Brufsky AM, Hurvitz S, Perez E, Swamy R, Valero V, O’Neill V, Rugo HS (2011) RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 29:4286–4293PubMedCrossRefGoogle Scholar
  58. 58.
    Pàez-Ribes M, Allen E, Hudock J et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Miles D, Harbeck N, Escudier B et al (2011) Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J Clin Oncol 29:83–88PubMedCrossRefGoogle Scholar
  60. 60.
    Lim E, Vaillant F, Wu D et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913PubMedCrossRefGoogle Scholar
  61. 61.
    Charafe-Jauffret E, Monville F, Bertucci F et al (2007) Moesin expression is a marker of basal breast carcinomas. Int J Cancer 121:1779–1785PubMedCrossRefGoogle Scholar
  62. 62.
    Foulkes WD, Brunet JS, Stefansson IM et al (2004) The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res 64:830–835PubMedCrossRefGoogle Scholar
  63. 63.
    O’Shaughnessy J. Dieras V. Glaspy J et al. (2009) Comparison of subgroup analyses of PFS from three phase III studies of bevacizumab in combination with chemotherapy in patients with HER2-negative metastatic breast cancer (MBC). San Antonio Breast Cancer Symposium: abstract 207Google Scholar
  64. 64.
    Thomssen C, Pierga JY, Pritchard KI et al (2012) First-line bevacizumab-containing therapy for triple-negative breast cancer: analysis of 585 patients treated in the ATHENA study. Oncology 82:218–227PubMedCrossRefGoogle Scholar
  65. 65.
    von Minckwitz G, Eidtmann H, Rezai M et al (2012) Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med 366:299–309CrossRefGoogle Scholar
  66. 66.
    Bear HD, Tang G, Rastogi P et al (2012) Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N Engl J Med 366:310–320PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Pierga JY, Petit T, Delozier T et al (2012) Neoadjuvant bevacizumab, trastuzumab, and chemotherapy for primary inflammatory HER2-positive breast cancer (BEVERLY-2): an open-label, single-arm phase 2 study. Lancet Oncol 13:375–384PubMedCrossRefGoogle Scholar
  68. 68.
    Thukral A, Thomasson DM, Chow CK et al (2007) Inflammatory breast cancer: dynamic contrast-enhanced MR in patients receiving bevacizumab—initial experience. Radiology 244:727–735PubMedCrossRefGoogle Scholar
  69. 69.
    Yang SX, Steinberg SM, Nguyen D, Wu TD, Modrusan Z, Swain SM (2008) Gene expression profile and angiogenic marker correlates with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer. Clin Cancer Res 14:5893–5899PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Cameron D. Brown J. Dent R et al. (2014) Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol (in press)Google Scholar
  71. 71.
    Van der Veldt AA, Lubberink M, Bahce I et al (2012) Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 21:82–91PubMedCrossRefGoogle Scholar
  72. 72.
    Heskamp S, Boerman OC, Molkenboer-Kuenen JD, Oyen WJ, van der Graaf WT, van Laarhoven HW (2013) Bevacizumab reduces tumor targeting of antiepidermal growth factor and anti-insulin-like growth factor 1 receptor antibodies. Int J Cancer 133:307–314PubMedCrossRefGoogle Scholar
  73. 73.
    Allegra CJ, Yothers G, O’Connell MJ et al (2011) Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol 29:11–16PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    de Gramont A, Van Cutsem E, Schmoll HJ et al (2012) Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol 13:1225–1233PubMedCrossRefGoogle Scholar
  75. 75.
    Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31:2205–2218PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Olivier Trédan
    • 1
    Email author
  • Magali Lacroix-Triki
    • 2
  • Séverine Guiu
    • 3
  • Marie-Ange Mouret-Reynier
    • 4
  • Jérôme Barrière
    • 5
  • François-Clément Bidard
    • 6
  • Antoine-Laurent Braccini
    • 7
  • Olivier Mir
    • 8
  • Christian Villanueva
    • 9
  • Philippe Barthélémy
    • 10
  1. 1.Department of Medical OncologyCentre Léon BérardLyon CedexFrance
  2. 2.Department of PathologyInstitut Claudius RégaudToulouseFrance
  3. 3.Department of Medical OncologyCentre Georges-François LeclercDijonFrance
  4. 4.Department of Medical OncologyCentre Jean PerrinClermont-FerrandFrance
  5. 5.Department of Medical OncologyCentre Antoine LacassagneNiceFrance
  6. 6.Department of Medical OncologyInstitut CurieParisFrance
  7. 7.Department of RadiotherapyCentre Val d’AurelleMontpellierFrance
  8. 8.Department of Medical OncologyHôpital CochinParisFrance
  9. 9.Department of Medical OncologyHôpital Jean MinjozBesançonFrance
  10. 10.Department of Hematology and OncologyHôpital de HautepierreStrasbourgFrance

Personalised recommendations