Targeted Oncology

, Volume 9, Issue 1, pp 1–8 | Cite as

Trends in cancer-targeted antibody–drug conjugates



Better knowledge of engineered antibodies and tumour biology has led to the development of novel targeted therapies, such as antibody–drug conjugates (ADCs). ADCs combine a monoclonal antibody, directed toward specific antigen highly expressed on the cancer cell, to potent cytotoxic drug through a stable linker. ADCs are designed to bind selectively to cancer cells and to deliver cytotoxic drugs into the cancer cell, which may preserve normal cells. ADCs should be stable and non-toxic in circulation. Upon binding to antigen, ADCs are internalized by different processes, followed by the intracellular release of an active form of the cytotoxic drug, which in turn kills the cancer cell. This technology has the potential to further improve the anticancer activity while limiting toxicity. First results from ongoing clinical trials are encouraging. Favourable pharmacokinetic profile was observed showing good stability in circulation. Clinical studies demonstrated that ADCs provide clinical efficacy with an acceptable safety profile. Objective responses and clinical benefits were demonstrated with the investigated ADCs. Major toxicities frequently associated to chemotherapy were barely or not reported with ADCs. Taken together, ADCs may become the new wave of anticancer drugs in the future.


Monoclonal antibodies Chemotherapy Antibody–drug conjugates Linker Cancer 


Conflict of interest

The authors declare no relevant financial activities for the submitted work.


  1. 1.
    Reichert JM, Valge-Archer VE (2007) Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6(5):349–356PubMedCrossRefGoogle Scholar
  2. 2.
    Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23(9):1137–1146. doi: 10.1038/nbt1141 PubMedCrossRefGoogle Scholar
  3. 3.
    Ricart AD, Tolcher AW (2007) Technology insight: cytotoxic drug immunoconjugates for cancer therapy. Nat Clin Pract Oncol 4(4):245–255. doi: 10.1038/ncponc0774 PubMedCrossRefGoogle Scholar
  4. 4.
    Carter P, Smith L, Ryan M (2004) Identification and validation of cell surface antigens for antibody targeting in oncology. Endocr Relat Cancer 11(4):659–687. doi: 10.1677/erc.1.00766 PubMedCrossRefGoogle Scholar
  5. 5.
    Law CL, Gordon KA, Toki BE, Yamane AK, Hering MA, Cerveny CG, Petroziello JM, Ryan MC, Smith L, Simon R, Sauter G, Oflazoglu E, Doronina SO, Meyer DL, Francisco JA, Carter P, Senter PD, Copland JA, Wood CG, Wahl AF (2006) Lymphocyte activation antigen CD70 expressed by renal cell carcinoma is a potential therapeutic target for anti-CD70 antibody-drug conjugates. Cancer Res 66(4):2328–2337PubMedCrossRefGoogle Scholar
  6. 6.
    Mao W, Luis E, Ross S, Silva J, Tan C, Crowley C, Chui C, Franz G, Senter P, Koeppen H, Polakis P (2004) EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res 64(3):781–788PubMedCrossRefGoogle Scholar
  7. 7.
    Carter PJ, Senter PD (2008) Antibody-drug conjugates for cancer therapy. Cancer J 14(3):154–169PubMedCrossRefGoogle Scholar
  8. 8.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. doi: 10.1056/NEJMoa1113205 PubMedCrossRefGoogle Scholar
  9. 9.
    Erickson HK, Park PU, Widdison WC, Kovtun YV, Garrett LM, Hoffman K, Lutz RJ, Goldmacher VS, Blattler WA (2006) Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 66(8):4426–4433PubMedCrossRefGoogle Scholar
  10. 10.
    Lonberg N (2008) Human monoclonal antibodies from transgenic mice. Handb Exp Pharmacol 181:69–97. doi: 10.1007/978-3-540-73259-4_4 PubMedCrossRefGoogle Scholar
  11. 11.
    Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23(9):1105–1116. doi: 10.1038/nbt1126 PubMedCrossRefGoogle Scholar
  12. 12.
    Becerril B, Poul MA, Marks JD (1999) Toward selection of internalizing antibodies from phage libraries. Biochem Biophys Res Commun 255(2):386–393. doi: 10.1006/bbrc.1999.0177 PubMedCrossRefGoogle Scholar
  13. 13.
    Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3(3):319–328. doi: 10.1016/S1567-5769(02)00271-0 PubMedCrossRefGoogle Scholar
  14. 14.
    Lee CM, Tannock IF (2010) The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer 10:255. doi: 10.1186/1471-2407-10-255 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ajani JA, Kelsen DP, Haller D, Hargraves K, Healey D (2000) A multi-institutional phase II study of BMS-182248-01 (BR96-doxorubicin conjugate) administered every 21 days in patients with advanced gastric adenocarcinoma. Cancer J 6(2):78–81PubMedGoogle Scholar
  16. 16.
    Tolcher AW, Sugarman S, Gelmon KA, Cohen R, Saleh M, Isaacs C, Young L, Healey D, Onetto N, Slichenmyer W (1999) Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 17(2):478–484Google Scholar
  17. 17.
    Salzberg AA, Dedon PC (2000) DNA bending is a determinant of calicheamicin target recognition. Biochemistry 39(25):7605–7612PubMedCrossRefGoogle Scholar
  18. 18.
    DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, Kunz A, Hamann PR, Gorovits B, Udata C, Moran JK, Popplewell AG, Stephens S, Frost P, Damle NK (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103(5):1807–1814PubMedCrossRefGoogle Scholar
  19. 19.
    Doronina SO, Mendelsohn BA, Bovee TD, Cerveny CG, Alley SC, Meyer DL, Oflazoglu E, Toki BE, Sanderson RJ, Zabinski RF, Wahl AF, Senter PD (2006) Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem 17(1):114–124PubMedCrossRefGoogle Scholar
  20. 20.
    Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB, Francisco JA, Wahl AF, Meyer DL, Senter PD (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21(7):778–784PubMedCrossRefGoogle Scholar
  21. 21.
    Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, Girish S, Tibbitts J, Yi JH, Sliwkowski MX, Jacobson F, Lutzker SG, Burris HA (2010) Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 28(16):2698–2704. doi: 10.1200/JCO.2009.26.2071 CrossRefGoogle Scholar
  22. 22.
    Burris HA 3rd, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, Tan-Chiu E, Krop IE, Michaelson RA, Girish S, Amler L, Zheng M, Chu YW, Klencke B, O'Shaughnessy JA (2011) Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol Off J Am Soc Clin Oncol 29(4):398–405. doi: 10.1200/JCO.2010.29.5865 CrossRefGoogle Scholar
  23. 23.
    Elias DJ, Hirschowitz L, Kline LE, Kroener JF, Dillman RO, Walker LE, Robb JA, Timms RM (1990) Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma. Cancer Res 50(13):4154–4159PubMedGoogle Scholar
  24. 24.
    Kaneko T, Willner D, Monkovic I, Knipe JO, Braslawsky GR, Greenfield RS, Vyas DM (1991) New hydrazone derivatives of adriamycin and their immunoconjugates—a correlation between acid stability and cytotoxicity. Bioconjug Chem 2(3):133–141PubMedCrossRefGoogle Scholar
  25. 25.
    Kigawa J, Minagawa Y, Kanamori Y, Itamochi H, Cheng X, Okada M, Oishi T, Terakawa N (1998) Glutathione concentration may be a useful predictor of response to second-line chemotherapy in patients with ovarian cancer. Cancer 82(4):697–702PubMedCrossRefGoogle Scholar
  26. 26.
    Sutherland MS, Sanderson RJ, Gordon KA, Andreyka J, Cerveny CG, Yu C, Lewis TS, Meyer DL, Zabinski RF, Doronina SO, Senter PD, Law CL, Wahl AF (2006) Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem 281(15):10540–10547PubMedCrossRefGoogle Scholar
  27. 27.
    Smith LM, Nesterova A, Alley SC, Torgov MY, Carter PJ (2006) Potent cytotoxicity of an auristatin-containing antibody-drug conjugate targeting melanoma cells expressing melanotransferrin/p97. Mol Cancer Ther 5(6):1474–1482PubMedCrossRefGoogle Scholar
  28. 28.
    Kovtun YV, Goldmacher VS (2007) Cell killing by antibody-drug conjugates. Cancer Lett 255(2):232–240PubMedCrossRefGoogle Scholar
  29. 29.
    Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5(2):147–159. doi: 10.1038/nrd1957 PubMedCrossRefGoogle Scholar
  30. 30.
    Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54(3):431–467PubMedCrossRefGoogle Scholar
  31. 31.
    Jedema I, Barge RM, van der Velden VH, Nijmeijer BA, van Dongen JJ, Willemze R, Falkenburg JH (2004) Internalization and cell cycle-dependent killing of leukemic cells by Gemtuzumab Ozogamicin: rationale for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia 18(2):316–325PubMedCrossRefGoogle Scholar
  32. 32.
    Walter RB, Raden BW, Kamikura DM, Cooper JA, Bernstein ID (2005) Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood 105(3):1295–1302. doi: 10.1182/blood-2004-07-2784 PubMedCrossRefGoogle Scholar
  33. 33.
    Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol Rev 77(3):759–803PubMedGoogle Scholar
  34. 34.
    Austin CD, De Maziere AM, Pisacane PI, van Dijk SM, Eigenbrot C, Sliwkowski MX, Klumperman J, Scheller RH (2004) Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell 15(12):5268–5282. doi: 10.1091/mbc.E04-07-0591 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Weisz OA (2003) Acidification and protein traffic. Int Rev Cytol 226:259–319PubMedCrossRefGoogle Scholar
  36. 36.
    Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, Leece BA, Chittenden T, Blattler WA, Goldmacher VS (2006) Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 66(6):3214–3221PubMedCrossRefGoogle Scholar
  37. 37.
    Okeley NM, Miyamoto JB, Zhang X, Sanderson RJ, Benjamin DR, Sievers EL, Senter PD, Alley SC (2010) Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res Off J Am Assoc Cancer Res 16(3):888–897. doi: 10.1158/1078-0432.CCR-09-2069 CrossRefGoogle Scholar
  38. 38.
    Sievers EL, Linenberger M (2001) Mylotarg: antibody-targeted chemotherapy comes of age. Curr Opin Oncol 13(6):522–527PubMedCrossRefGoogle Scholar
  39. 39.
  40. 40.
    FDA (2011) FDA Approval for brentuximab vedotin. Accessed 9 Nov 2013
  41. 41.
    Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, Forero-Torres A (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363(19):1812–1821. doi: 10.1056/NEJMoa1002965 PubMedCrossRefGoogle Scholar
  42. 42.
    Fanale MA, Forero-Torres A, Rosenblatt JD, Advani RH, Franklin AR, Kennedy DA, Han TH, Sievers EL, Bartlett NL (2012) A phase I weekly dosing study of brentuximab vedotin in patients with relapsed/refractory CD30-positive hematologic malignancies. Clin Cancer Res Off J Am Assoc Cancer Res 18(1):248–255. doi: 10.1158/1078-0432.CCR-11-1425 CrossRefGoogle Scholar
  43. 43.
    Katz J, Janik JE, Younes A (2011) Brentuximab vedotin (SGN-35). Clin Cancer Res Off J Am Assoc Cancer Res 17(20):6428–6436. doi: 10.1158/1078-0432.CCR-11-0488 CrossRefGoogle Scholar
  44. 44.
    Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, Ramchandren R, Bartlett NL, Cheson BD, de Vos S, Forero-Torres A, Moskowitz CH, Connors JM, Engert A, Larsen EK, Kennedy DA, Sievers EL, Chen R (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J Clin Oncol Off J Am Soc Clin Oncol 30(18):2183–2189. doi: 10.1200/JCO.2011.38.0410 CrossRefGoogle Scholar
  45. 45.
    Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, Matous J, Ramchandren R, Fanale M, Connors JM, Yang Y, Sievers EL, Kennedy DA, Shustov A (2012) Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol Off J Am Soc Clin Oncol 30(18):2190–2196. doi: 10.1200/JCO.2011.38.0402 CrossRefGoogle Scholar
  46. 46.
    Burris HA 3rd, Tibbitts J, Holden SN, Sliwkowski MX, Lewis Phillips GD (2011) Trastuzumab emtansine (T-DM1): a novel agent for targeting HER2+ breast cancer. Clin Breast Cancer 11(5):275–282. doi: 10.1016/j.clbc.2011.03.018 PubMedCrossRefGoogle Scholar
  47. 47.
    Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blattler WA, Lambert JM, Chari RV, Lutz RJ, Wong WL, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68(22):9280–9290. doi: 10.1158/0008-5472.CAN-08-1776 PubMedCrossRefGoogle Scholar
  48. 48.
    Girish S, Gupta M, Wang B, Lu D, Krop IE, Vogel CL, Burris Iii HA, LoRusso PM, Yi JH, Saad O, Tong B, Chu YW, Holden S, Joshi A (2012) Clinical pharmacology of trastuzumab emtansine (T-DM1): an antibody-drug conjugate in development for the treatment of HER2-positive cancer. Cancer Chemother Pharmacol 69(5):1229–1240. doi: 10.1007/s00280-011-1817-3 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Gupta M, Lorusso PM, Wang B, Yi JH, Burris HA 3rd, Beeram M, Modi S, Chu YW, Agresta S, Klencke B, Joshi A, Girish S (2012) Clinical implications of pathophysiological and demographic covariates on the population pharmacokinetics of trastuzumab emtansine, a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer. J Clin Pharmacol 52(5):691–703. doi: 10.1177/0091270011403742 PubMedCrossRefGoogle Scholar
  50. 50.
    Gupta M, Wang B, Carrothers TJ, Joshi A, LoRusso PM, Chu W, Shih T, Loecke D, Girish S (2011) Exposure-response analysis in patients with HER2-positive (HER2+) metastatic breast cancer (MBC) to assess the effect of T-DM1 on QTc prolongation. Paper presented at the ASCPT Conference, Dallas, TX, 3 April 2011Google Scholar
  51. 51.
    Krop IE, LoRusso P, Miller KD, Modi S, Yardley D, Rodriguez G, Lu M, Burington B, Agresta S, Rugo H (2010) A phase 2 study of the HER2 antibody-drug conjugate trastuzumab-DM1 (T-DM1) in patients with HER2-positive metastatic breast cancer (MBC) previously treated with trastuzumab, lapatinib, and chemotherapy. Paper presented at the European Society for Medical Oncology (ESMO), Milan, 8–12 October 2010Google Scholar
  52. 52.
    Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh DY, Dieras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367(19):1783–1791. doi: 10.1056/NEJMoa1209124 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  1. 1.Department of Medical OncologyInstitut CurieParisFrance
  2. 2.Department of Medical OncologyCentre Leon Bérard, CRCL INSERM 1052/CNRS 5286LyonFrance

Personalised recommendations