Targeted Oncology

, Volume 9, Issue 3, pp 239–249 | Cite as

A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma

  • Nate N. Waldron
  • Sanford H. Barsky
  • Phillip R. Dougherty
  • Daniel A. ValleraEmail author
Original Research


The discovery of chemoresistant cancer stem cells (CSCs) in carcinomas has created the need for therapies that specifically target these subpopulations of cells. Here, we characterized a bispecific targeted toxin that is composed of two antibody fragments and a catalytic protein toxin allowing it to bind two CSC markers on the same cell killing this resistant subpopulation. CD133 is a well-known CSC marker and has been successfully targeted and caused regression of head and neck squamous cell carcinoma (HNSCC) in vivo. To enable it to bind a broader range of CSCs, an anti-epithelial cell adhesion molecule (EpCAM) scFv was added to create dEpCAMCD133KDEL, a deimmunized bispecific targeted toxin on a single amino acid chain. This bispecific potently inhibited protein translation and proliferation in vitro in three different types of carcinoma. Furthermore, in a CSC spheroid model dEpCAMCD133KDEL eliminated Mary-X spheroids, an inflammatory breast carcinoma. Finally, this bispecific also caused tumor regression in an in vivo model of HNSCC. This represents the first bispecific CSC-targeted toxin and warrants further development as a possible therapy for carcinoma.


Cancer stem cells Targeted toxins Immunotoxins CD133 EpCAM Head and neck squamous cell carcinoma 



This work was supported in part by the US Public Health Service Grant R01-CA36725 awarded by the NCI and the NIAID, DHHS, the Randy Shaver Foundation, the Atwater Cancer Drug Development Award, and a CETI translational award from the University of Minnesota Masonic Cancer Center.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC (2007) Epithelial cell adhesion molecule: More than a carcinoma marker and adhesion molecule. Am J Pathol 171:386–395PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Munz M, Baeuerle PA, Gires O (2009) The emerging role of EpCAM in stem cell signaling. Cancer Res 69:5627Google Scholar
  3. 3.
    Takahashi-Yanaga F, Kahn M (2010) Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 16:3153–3162PubMedCrossRefGoogle Scholar
  4. 4.
    Moncharmont C, Levy A, Gilormini M, Bertrand G, Chargari C, Alphonse G, Ardail D, Rodriguez-Lafrasse C, Magne N (2012) Targeting a cornerstone of radiation resistance: cancer stem cell. Cancer Lett 322:139–147PubMedCrossRefGoogle Scholar
  5. 5.
    Van der Gun BT, Melchers LJ, Ruiters MH, de Leij LF, McLaughlin PM, Rots MG (2010) EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis 31:1913–1921PubMedCrossRefGoogle Scholar
  6. 6.
    Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768PubMedCrossRefGoogle Scholar
  7. 7.
    Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, A novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012PubMedGoogle Scholar
  8. 8.
    Boman BM, Wicha MS (2008) Cancer stem cells: a step toward the cure. J Clin Oncol 26:2795–2799PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrandina G, Petrillo M, Bonanno G, Scambia G (2009) Targeting CD133 antigen in cancer. Expert Opin Ther Targets 13:823–837PubMedCrossRefGoogle Scholar
  10. 10.
    Rappa G, Fodstad O, Lorico A (2008) The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells 26:3008–3017PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mak AB, Nixon AM, Kittanakom S, Stewart JM, Chen GI, Curak J, Gingras AC, Mazitschek R, Neel BG, Stagljar I, Moffat J (2012) Regulation of CD133 by HDAC6 promotes β-catenin signaling to suppress cancer cell differentiation. Cell Rep 2:951–963PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Takenobu H, Shimozato O, Nakamura T, Ochiai H, Yamaguchi Y, Ohira M, Nakagawara A, Kamijo T (2011) CD133 suppresses neuroblastoma cell differentiation via signal pathway modification. Oncogene 30:97–105PubMedCrossRefGoogle Scholar
  13. 13.
    Swaminathan SK, Niu L, Waldron NN, Kalscheuer S, Zellmer D, Olin MR, Ohlfest JR, Vallera DA, Panyam J (2013) Identification and characterization of a novel scFv recognizing human and mouse CD133. Drug Deliv Transl Res. doi: 10.1007/s13346-012-0099-6 Google Scholar
  14. 14.
    Waldron NN, Kaufman DS, Oh S, Inde Z, Hexum MK, Ohlfest JR, Vallera DA (2011) Targeting tumor-initiating cancer cells with dCD133KDEL shows impressive tumor reductions in a xenotransplant model of human head and neck cancer. Mol Cancer Ther 10:1829–1838PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ohlfest JR, Zellmer D, Panyam J, Swaminathan SK, Oh S, Waldron NN, Toma S, Vallera DA (2012) Immunotoxin targeting CD133+ breast carcinoma cells. Drug Deliv Transl Res. doi: 10.1007/s13346-012-0066-2 Google Scholar
  16. 16.
    Skubitz APN, Taras EP, Boylan KLM, Waldron NN, Oh, S, Panoskaltsis-Mortari A, Vallera DA (2013) Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression. Gynecol Oncol. doi: 10.1016/j.ygyno.2013.05.027
  17. 17.
    Stish BJ, Oh S, Chen H, Dudek AZ, Kratzke RA, Vallera DA (2009) Design and modification of EGF4KDEL 7mut, a novel bispecific ligand-directed toxin, with decreased immunogenicity and potent anti-mesothelioma activity. Br J Cancer 101:1114–1123PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Tsai AK, Oh S, Chen H, Shu Y, Ohlfest JR, Vallera DA (2011) A novel bispecific ligand-directed toxin designed to simultaneously target EGFR on human glioblastoma cells and uPAR on tumor neovasculature. J Neurooncol 103:255–266PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Vallera DA, Oh S, Chen H, Shu Y, Frankel AE (2010) Bioengineering a unique deimmunized bispecific targeted toxin that simultaneously recognizes human CD22 and CD19 receptors in a mouse model of B-cell metastases. Mol Cancer Ther 9:1872–1883PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Stish BJ, Chen H, Shu Y, Panoskaltsis-Mortari A, Vallera DA (2007) Increasing anticarcinoma activity of an anti-erbB2 recombinant immunotoxin by the addition of an anti-EpCAM sFv. Clin Cancer Res 13:3058–3067PubMedCrossRefGoogle Scholar
  21. 21.
    MacDonald GC, Rasamoelisolo M, Entwistle J, Cizeau J, Bosc D, Cuthbert W, Kowalski M, Spearman M, Glover N (2009) A phase I clinical study of VB4-845: Weekly intratumoral administration of an anti-EpCAM recombinant fusion protein in patients with squamous cell carcinoma of the head and neck. Drug Des Devel Ther 2:105–114PubMedCentralPubMedGoogle Scholar
  22. 22.
    Kowalski M, Entwistle J, Cizeau J, Niforos D, Loewen S, Chapman W, MacDonald GC (2010) A phase I study of an intravesically administered immunotoxin targeting EpCAM for the treatment of nonmuscle-invasive bladder cancer in BCG-refractory and BCG-intolerant patients. Drug Des Devel Ther 4:313–320PubMedCentralPubMedGoogle Scholar
  23. 23.
    Kowalski M, Guindon J, Brazas L, Moore C, Entwistle J, Cizeau J, Jewett MA, MacDonald GC (2012) A phase II study of oportuzumab monatox: an immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with Bacillus Calmette–Guérin. J Urol 188:1712–1718PubMedCrossRefGoogle Scholar
  24. 24.
    Fitzgerald D, Pastan I (1989) Targeted toxin therapy for the treatment of cancer. J Natl Cancer Inst 81:1455–1463PubMedCrossRefGoogle Scholar
  25. 25.
    Kreitman RJ, Pastan I (1995) Importance of the glutamate residue of KDEL in increasing the cytotoxicity of Pseudomonas exotoxin derivatives and for increased binding to the KDEL receptor. Biochem J 307(697):29–37PubMedCentralPubMedGoogle Scholar
  26. 26.
    Vallera DA, Chen H, Sicheneder AR, Panoskaltsis-Mortari A, Taras EP (2009) Genetic alteration of a bispecific ligand directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic. Leuk Res 33:1233–1242PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Worsham MJ, Chen KM, Meduri V, Nygren AO, Errami A, Schouten JP, Benninger MS (2006) Epigenetic events of disease progression in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 132:668–677PubMedCrossRefGoogle Scholar
  28. 28.
    Abu-Ali S, Fotovati A, Shirasuna K (2008) Tyrosine-kinase inhibition results in EGFR clustering at focal adhesions and consequent exocytosis in uPAR down-regulated cells of head and neck cancers. Mol Cancer 7:47PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Onc 26:2839–2845CrossRefGoogle Scholar
  30. 30.
    Fabrizi E, di Martino S, Pelacchi F, Ricci-Vitiani L (2010) Therapeutic implications of colon cancer stem cells. World J Gastroenterol 16:3871–3877PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, Pickell K, Aguilar J, Lazetic S, Smith-Berdan S, Clarke MF, Hoey T, Lewicki J, Gurney AL (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 3:e2428PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren G 2nd, Samuel S, Kim MP, Lim SJ, Ellis LM (2009) Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res 69:1951–1957PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Alpaugh ML, Tomlinson JS, Shao ZM, Barsky SH (1999) A novel human xenograft model of inflammatory breast cancer. Cancer Res 59:5079–5084PubMedGoogle Scholar
  34. 34.
    Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148:3–15PubMedCrossRefGoogle Scholar
  35. 35.
    Imrich S, Hachmeister M, Gires O (2012) EpCAM and its potential role in tumor-initiating cells. Cell Adh Migr 6:30–38PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, Ye Q, Qin L, Wauthier E, Reid LM, Minato H, Honda M, Kaneko S, Tang ZY, Wang XW (2009) EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136:1012–1024PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Rutella S, Bonanno G, Marone M, De Ritis D, Mariotti A, Voso MT, Scambia G, Mancuso S, Leone G, Pierelli L (2003) Identification of a novel subpopulation of human cord blood CD34–CD133− CD7–CD45þ lineage-cells capable of lymphoid/NK cell differentiation after in vitro exposure to IL-15. J Immunol 171:2977–2988Google Scholar
  38. 38.
    Floor S, van Staveren WC, Larsimont D, Dumont JE, Maenhaut C (2011) Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: distinct, overlapping or same populations. Oncogene 30:4609–4621PubMedCrossRefGoogle Scholar
  39. 39.
    Suuronen EJ, Wong S, Kapila V, Waghray G, Whitman SC, Mesana TG, Ruel M (2006) Generation of CD133+ cells from CD133− peripheral blood mononuclear cells and their properties. Cardiovasc Res 70:126–135PubMedCrossRefGoogle Scholar
  40. 40.
    Onda M, Beers R, Xiang L, Nagata S, Wang QC, Pastan I (2008) An immunotoxin with greatly reduced immunogenicity by identification and removal of B-cell epitopes. Proc Natl Acad Sci U S A 105(701):11311–11316PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Hassan R, Broaddus VC, Wilson S, Liewehr DJ, Zhang J (2007) Anti-mesothelin immunotoxin SS1P in combination with Gemcitabine results in increased activity against mesothelin-expressing tumor xenografts. Clin Cancer Res 13:7166–7171PubMedCrossRefGoogle Scholar
  42. 42.
    Pearson JW, Sivam G, Manger R, Wiltrout RH, Morgan AC Jr, Longo DL (1989) Enhanced therapeutic efficacy of an immunotoxin in combination with chemotherapy against an intraperitoneal human tumor xenograft in athymic mice. Cancer Res 49:4990–4995PubMedGoogle Scholar
  43. 43.
    Fujiwara S, Wada H, Miyata H, Kawada J, Kawabata R, Nishikawa H, Gnjatic S, Sedrak C, Sato E, Nakamura Y, Sakakibara M, Kanto T, Shimosegawa E, Hatazawa J, Takahashi T, Kurokawa Y, Yamasaki M, Nakajima K, Takiguchi S, Nakayama E, Mori M, Doki Y (2012) Clinical trial of the intratumoral administration of labeled DC combined with systemic chemotherapy for esophageal cancer. J Immunother 35(6):513–521PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • Nate N. Waldron
    • 1
  • Sanford H. Barsky
    • 2
  • Phillip R. Dougherty
    • 1
  • Daniel A. Vallera
    • 3
    Email author
  1. 1.Department of PharmacologyUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of PathologyUniversity of Nevada School of MedicineRenoUSA
  3. 3.Department of Therapeutic Radiology-Radiation Oncology, Section on Molecular Cancer TherapeuticsUniversity of Minnesota Masonic Cancer CenterMinneapolisUSA

Personalised recommendations