Skip to main content
Log in

Profiling mTOR pathway in neuroendocrine tumors

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

The serine/threonine kinase mammalian target of rapamycin (mTOR) plays a central role in regulating critical cellular processes such as growth, proliferation, and protein synthesis. The study of cancer predisposing syndromes within which neuroendocrine tumors (NETs) may arise has furnished clues on the involvement of mTOR pathway in sporadic diseases so far. Recent comprehensive analyses have definitely shown activation of mTOR pathway in both experimental and human sporadic NETs. Upstream regulators of mTOR (PTEN and TSC2) have been found mutated in sporadic pNETs. Activation of mTOR pathways in NETs is already demonstrated by expression profiles analysis that revealed downregulation of TSC2 gene and alterations of TSC2 and PTEN protein expression in the vast majority of well-differentiated tumors. Moreover, a global microRNA expression analysis revealed the overexpression, in highly aggressive tumors, of a microRNA (miR-21) that targets PTEN reducing its expression and therefore leading to mTOR activation as well. Overall, these clues have furnished the rationale for the use of mTOR inhibitors the treatment of pNETs. With the recent approval of Everolimus (mTOR-targeted drug) for the treatment of advanced pNETs, this paradigm has been effectively translated into the clinical setting. In this review, we discuss mTOR pathway involvement in NETs, the clinical evidence supporting the use of mTOR inhibitors in cancer treatment, and the current clinical issues that remain to be elucidated to improve patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Thomas GV, Tran C, Mellinghoff IK et al (2006) Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12(1):122–127

    Article  PubMed  CAS  Google Scholar 

  2. Hudson CC, Liu M, Chiang GG et al (2002) Regulation of hypoxia-inducible factor 1 α expression and function by the mammalian target of rapamycin. Mol Cell Biol 22(20):7004–7014

    Article  PubMed  CAS  Google Scholar 

  3. Johannessen CM, Reczek EE, James MF et al (2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci 102(24):8573–8578

    Article  PubMed  CAS  Google Scholar 

  4. Missiaglia E, Dalai I, Barbi S et al (2010) Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 28(2):245–255

    Article  PubMed  CAS  Google Scholar 

  5. Krausch M, Raffel A, Anlauf M et al (2011) Loss of PTEN expression in neuroendocrine pancreatic tumors. Horm Metab Res 43(12):865–871

    Article  PubMed  CAS  Google Scholar 

  6. Speel EJM, Richter J, Moch H et al (1999) Short communication genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. Am J Pathol 155(6):1787–1794

    Article  PubMed  CAS  Google Scholar 

  7. Floridia G, Grilli G, Salvatore M et al (2005) Chromosomal alterations detected by comparative genomic hybridization in nonfunctioning endocrine pancreatic tumors. Cancer Genet Cytogenet 156(1):23–30

    Article  PubMed  CAS  Google Scholar 

  8. Hu W, Feng Z, Modica I et al (2010) Gene amplifications in well-differentiated pancreatic neuroendocrine tumors inactivate the p53 pathway. Genes Cancer 1(4):360–368

    Article  PubMed  CAS  Google Scholar 

  9. Jiao Y, Shi C, Edil BH et al (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331(6021):1199–1203

    Article  PubMed  CAS  Google Scholar 

  10. Roldo C, Missiaglia E, Hagan JP et al (2006) MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 24(29):4677–4684

    Article  PubMed  CAS  Google Scholar 

  11. Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658

    Article  PubMed  CAS  Google Scholar 

  12. Corbo V, Beghelli S, Bersani S et al (2012) Pancreatic endocrine tumours: mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries. Ann Oncol 23:127–134

    Article  PubMed  CAS  Google Scholar 

  13. Yao JC, Shah MH, Ito T et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364:514–523

    Article  PubMed  CAS  Google Scholar 

  14. Kang S, Denley A, Vanhaesebroeck B, Vogt PK (2006) Oncogenic transformation induced by the p110 β, -γ, and -δ isoforms of class I phosphoinositide 3-kinase. Proc Natl Acad Sci 103(5):1289–1294

    Article  PubMed  CAS  Google Scholar 

  15. Barbi S, Cataldo I, De Manzoni G et al (2010) The analysis of PIK3CA mutations in gastric carcinoma and metanalysis of literature suggest that exon-selectivity is a signature of cancer type. J Exp Clin Cancer Res 29:32

    Article  PubMed  Google Scholar 

  16. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644

    Article  PubMed  CAS  Google Scholar 

  17. Pitt SC, Chen H, Kunnimalaiyaan M et al (2010) Phosphatidylinositol 3-kinase-Akt signaling in pulmonary carcinoid cells. J Am Coll Surg 209(1):82–88

    Article  Google Scholar 

  18. Couderc C, Poncet G, Villaume K et al (2011) Targeting the PI3K/mTOR pathway in murine endocrine cell lines in vitro and in vivo effects on tumor cell growth. AJPA 178(1):336–344

    CAS  Google Scholar 

  19. Zitzmann K, Rüden JV, Brand S et al (2010) Compensatory activation of Akt in response to mTOR and Raf inhibitors—a rationale for dual-targeted therapy approaches in neuroendocrine tumor disease. Cancer Lett 295(1):100–109

    Article  PubMed  CAS  Google Scholar 

  20. Carracedo A, Ma L, Teruya-feldstein J et al (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Investig 118(9):3065–3074

    PubMed  CAS  Google Scholar 

  21. Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13(3):195–203

    Article  PubMed  CAS  Google Scholar 

  22. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50):7455–7464

    Article  PubMed  CAS  Google Scholar 

  23. Parsons DW, Wang T-L, Samuels Y et al (2005) Colorectal cancer: mutations in a signalling pathway. Nature 436(7052):792

    Article  PubMed  CAS  Google Scholar 

  24. Brugge J, Hung M-C, Mills GB (2007) A new mutational AKTivation in the PI3K pathway. Cancer Cell 12(2):104–107

    Article  PubMed  CAS  Google Scholar 

  25. Bleeker FE, Felicioni L, Buttitta F et al (2008) AKT1(E17K) in human solid tumours. Oncogene 27(42):5648–5650

    Article  PubMed  CAS  Google Scholar 

  26. Ghayouri M, Boulware D, Nasir A et al (2010) Activation of the serine/theronine protein kinase Akt in enteropancreatic neuroendocrine tumors. Anticancer Res 30(12):5063–5067

    PubMed  Google Scholar 

  27. Shah J, Hochhauser D, Frow R et al (2006) Epidermal growth factor receptor and activation in neuroendocrine tumors. J Neuroendocrinol 18(5):355–360

    Article  PubMed  CAS  Google Scholar 

  28. Zitzmann K, Vlotides G, Brand S et al (2012) Perifosine-mediated Akt inhibition in neuroendocrine tumor cells: role of specific Akt isoforms. Endocr Relat Cancer 19(3):423–434

    Article  PubMed  CAS  Google Scholar 

  29. Gloesenkamp CR, Nitzsche B, Ocker M et al (2012) AKT inhibition by triciribine alone or as combination therapy for growth control of gastroenteropancreatic neuroendocrine tumors. Int J Oncol 40(3):876–888

    PubMed  CAS  Google Scholar 

  30. Yap TA, Yan L, Patnaik A et al (2011) First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol 29(35):4688–4695

    Article  PubMed  CAS  Google Scholar 

  31. Alessi DR, Pearce LR, García-Martínez JM (2009) New insights into mTOR signaling: mTORC2 and beyond. Sci Signal 2(67):pe27

    Article  PubMed  Google Scholar 

  32. Harrington LS, Findlay GM, Gray A et al (2004) The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166(2):213–223

    Article  PubMed  CAS  Google Scholar 

  33. Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14(18):1650–1656

    Article  PubMed  CAS  Google Scholar 

  34. Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27(41):5527–5541

    Article  PubMed  CAS  Google Scholar 

  35. Svejda B, Kidd M, Kazberouk A et al (2011) Limitations in small intestinal neuroendocrine tumor therapy by mTor kinase inhibition reflect growth factor-mediated PI3K feedback loop activation via ERK1/2 and AKT. Cancer 117(18):4141–4154

    Article  PubMed  CAS  Google Scholar 

  36. Hardt M, Chantaravisoot N, Tamanoi F et al (2011) Activating mutations of TOR (target of rapamycin). Genes Cells 16(2):141–151

    Article  PubMed  CAS  Google Scholar 

  37. Guertin DA, Sabatini DM (2009) The pharmacology of mTOR inhibition. Sci Signal 2(67):pe24

    Article  PubMed  Google Scholar 

  38. Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285(19):14071–14077

    Article  PubMed  CAS  Google Scholar 

  39. Zitzmann K, De Toni EN, Brand S et al (2007) The novel mTOR inhibitor RAD001 (everolimus) induces antiproliferative effects in human pancreatic neuroendocrine tumor cells. Neuroendocrinology 85(1):54–60

    Article  PubMed  CAS  Google Scholar 

  40. Grozinsky-Glasberg S, Franchi G, Teng M et al (2008) Octreotide and the mTOR inhibitor RAD001 (everolimus) block proliferation and interact with the Akt-mTOR-p70S6K pathway in a neuro-endocrine tumour cell Line. Neuroendocrinology 87(3):168–181

    Article  PubMed  CAS  Google Scholar 

  41. Zatelli MC, Minoia M, Martini C et al (2010) Everolimus as a new potential antiproliferative agent in aggressive human bronchial carcinoids. Endocr Relat Cancer 17(3):719–729

    Article  PubMed  CAS  Google Scholar 

  42. Meric-Bernstam F, Akcakanat A, Chen H et al (2012) PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors. Clin Cancer Res 18(16):1777–1789

    Article  PubMed  CAS  Google Scholar 

  43. Yao JC, Lombard-Bohas C, Baudin E et al (2010) Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 28(1):69–76

    Article  PubMed  CAS  Google Scholar 

  44. Pavel ME, Hainsworth JD, Baudin E et al (2011) Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378(9808):2005–2012

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This paper was partly supported by grants from the Associazione Italiana Ricerca sul Cancro (AIRC IG-11930 and AIRC 5 per mille 12182).

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cingarlini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cingarlini, S., Bonomi, M., Corbo, V. et al. Profiling mTOR pathway in neuroendocrine tumors. Targ Oncol 7, 183–188 (2012). https://doi.org/10.1007/s11523-012-0226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-012-0226-9

Keywords

Navigation