Skip to main content
Log in

Glioma stem cells as a target for treatment

  • Perspectives
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Glioma cells with stem cell-like properties represent a minor subfraction of the total tumor cell population. These cells are highly chemo- and radioresistent and are held responsible for the inevitable recurrence of malignant gliomas. This review summarizes current strategies for targeting putative glioma stem cells. Target definition approaches comprise extrapolation and adaptation of therapies from general oncology, target identification by correlative molecular genetic analyses, and dedicated target discovery research. Targeting strategies include inhibition of tumor-specific signaling pathways, enhancement of tumor cell differentiation, radiosensitization, indirect targeting of the tumor stem cell niche, oncolytic virotherapy, and adhesion molecule blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  CAS  PubMed  Google Scholar 

  2. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  CAS  PubMed  Google Scholar 

  3. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  4. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337

    Article  CAS  PubMed  Google Scholar 

  5. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  CAS  PubMed  Google Scholar 

  6. Beier D, Hau P, Proescholdt M et al (2007) CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  CAS  PubMed  Google Scholar 

  7. Gunther HS, Schmidt NO, Phillips HS et al (2008) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27:2897–2909

    Article  CAS  PubMed  Google Scholar 

  8. Joo KM, Kim SY, Jin X et al (2008) Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 88:808–815

    Article  CAS  PubMed  Google Scholar 

  9. Ogden AT, Waziri AE, Lochhead RA et al (2008) Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62:505–514, discussion 14–15

    Article  PubMed  Google Scholar 

  10. Wang J, Sakariassen PO, Tsinkalovsky O et al (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768

    Article  CAS  PubMed  Google Scholar 

  11. Chen R, Nishimura MC, Bumbaca SM et al (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375

    Article  CAS  PubMed  Google Scholar 

  12. Zheng X, Shen G, Yang X, Liu W (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67:3691–3697

    Article  CAS  PubMed  Google Scholar 

  13. Blazek ER, Foutch JL, Maki G (2007) Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys 67:1–5

    CAS  PubMed  Google Scholar 

  14. Platet N, Liu SY, Atifi ME et al (2007) Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett 258:286–290

    Article  CAS  PubMed  Google Scholar 

  15. Griguer CE, Oliva CR, Gobin E et al (2008) CD133 is a marker of bioenergetic stress in human glioma. PLoS ONE 3:e3655

    Article  PubMed  Google Scholar 

  16. Sakariassen PO, Immervoll H, Chekenya M (2007) Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia 9:882–892

    Article  CAS  PubMed  Google Scholar 

  17. Hadjipanayis CG, Van Meir EG (2009) Brain cancer propagating cells: biology, genetics and targeted therapies. Trends Mol Med 15:519–530

    Article  CAS  PubMed  Google Scholar 

  18. Fan X, Khaki L, Zhu TS et al (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16

    CAS  PubMed  Google Scholar 

  19. Wang J, Wakeman TP, Lathia JD et al (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28:17–28

    CAS  PubMed  Google Scholar 

  20. Eyler CE, Foo WC, LaFiura KM, McLendon RE, Hjelmeland AB, Rich JN (2008) Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26:3027–3036

    Article  CAS  PubMed  Google Scholar 

  21. Bar EE, Chaudhry A, Lin A et al (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524–2533

    Article  CAS  PubMed  Google Scholar 

  22. Hjelmeland AB, Wu Q, Wickman S et al (2010) Targeting A20 decreases glioma stem cell survival and tumor growth. PLoS Biol 8:e1000319

    Article  PubMed  Google Scholar 

  23. Wang J, Wang H, Li Z et al (2008) c-Myc is required for maintenance of glioma cancer stem cells. PLoS ONE 3:e3769

    Article  PubMed  Google Scholar 

  24. Suva ML, Riggi N, Janiszewska M et al (2009) EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res 69:9211–9218

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Lathia JD, Wu Q et al (2009) Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 27:2393–2404

    Article  CAS  PubMed  Google Scholar 

  26. Lamszus K, Schulte A, Günther H, Phillips HS, Kemming D, Westphal M (2010) A distinct subset of glioma cell lines with stem cell-like properties reflects the transcriptional phenotype of human glioblastomas and overexpresses CXCR4 as therapeutic target. Abstract, The 18th Conference on Brain Tumor Research and Therapy, May 18–20, 2010, Travemünde, Germany

  27. Piccirillo SG, Reynolds BA, Zanetti N et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765

    Article  CAS  PubMed  Google Scholar 

  28. Wurdak H, Zhu S, Romero A et al (2010) An RNAi screen identifies TRRAP as a regulator of brain tumor-initiating cell differentiation. Cell Stem Cell 6:37–47

    Article  CAS  PubMed  Google Scholar 

  29. Campos B, Wan F, Farhadi M et al (2010) Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res 16:2715–2728

    Article  CAS  PubMed  Google Scholar 

  30. Butowski N, Prados MD, Lamborn KR et al (2005) A phase II study of concurrent temozolomide and cis-retinoic acid with radiation for adult patients with newly diagnosed supratentorial glioblastoma. Int J Radiat Oncol Biol Phys 61:1454–1459

    CAS  PubMed  Google Scholar 

  31. Kaba SE, Kyritsis AP, Conrad C et al (1997) The treatment of recurrent cerebral gliomas with all-trans-retinoic acid (tretinoin). J Neurooncol 34:145–151

    Article  CAS  PubMed  Google Scholar 

  32. Phuphanich S, Scott C, Fischbach AJ, Langer C, Yung WK (1997) All-trans-retinoic acid: a phase II Radiation Therapy Oncology Group study (RTOG 91-13) in patients with recurrent malignant astrocytoma. J Neurooncol 34:193–200

    Article  CAS  PubMed  Google Scholar 

  33. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  34. Murat A, Migliavacca E, Gorlia T et al (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26:3015–3024

    Article  CAS  PubMed  Google Scholar 

  35. Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  Google Scholar 

  36. Beier D, Rohrl S, Pillai DR et al (2008) Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res 68:5706–5715

    Article  CAS  PubMed  Google Scholar 

  37. Hirschmann-Jax C, Foster AE, Wulf GG et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233

    Article  CAS  PubMed  Google Scholar 

  38. Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  CAS  PubMed  Google Scholar 

  39. Bao S, Wu Q, Sathornsumetee S et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848

    Article  CAS  PubMed  Google Scholar 

  40. Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67:3560–3564

    Article  CAS  PubMed  Google Scholar 

  41. Jiang H, Gomez-Manzano C, Aoki H et al (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99:1410–1414

    Article  CAS  PubMed  Google Scholar 

  42. Wakimoto H, Kesari S, Farrell CJ et al (2009) Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res 69:3472–3481

    Article  CAS  PubMed  Google Scholar 

  43. Bao S, Wu Q, Li Z et al (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68:6043–6048

    Article  CAS  PubMed  Google Scholar 

  44. Hatiboglu MA, Wei J, Wu ASG, Heimberger A (2010) Immune therapeutic targeting of glioma cancer stem cells. Target Oncol. doi:10.1007/s11523-010-0151-8 (in this issue)

  45. Kefas B, Comeau L, Floyd DH et al (2009) The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 29:15161–15168

    Article  CAS  PubMed  Google Scholar 

  46. Guessous F, Zhang Y, Kofman A et al (2010) microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9(6):1031–1036

    Google Scholar 

  47. Glass R, Synowitz M, Kronenberg G et al (2005) Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci 25:2637–2646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors´ work is supported by the Deutsche Forschungsgemeinschaft (LA 1300/3-1 and LA 1300/4-1), the Deutsche Krebshilfe e.V., and the Johannes Bauer Stiftung für Hirntumorforschung.

Conflict of interest statement

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Lamszus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamszus, K., Günther, H.S. Glioma stem cells as a target for treatment. Targ Oncol 5, 211–215 (2010). https://doi.org/10.1007/s11523-010-0155-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-010-0155-4

Keywords

Navigation