Skip to main content
Log in

Treatment selection after imatinib resistance in chronic myeloid leukemia

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Chronic myeloid leukemia (CML) is a progressive and often fatal malignancy of the blood. The harbinger of CML is a chromosomal translocation that results in the synthesis of the BCR-ABL fusion protein, a constitutively active tyrosine kinase. The advent of imatinib, an inhibitor targeted specifically for BCR-ABL, represented a significant medical advance in CML therapy. However, patients with CML can exhibit varying responses to first-line treatment with imatinib. While most patients respond to treatment, some may experience a loss of response or require treatment discontinuation due to toxicity. Frequent monitoring for resistance or intolerance is a requirement for recognition of suboptimal response. Mutational analysis of the patient’s BCR-ABL alleles is also informative and may be predictive of a response to therapy. Published physician guidelines have highlighted these recommendations, but it is not clear if these guidelines are universally followed. One option in patients showing poor response to standard-dose imatinib of 400 mg is to escalate the dose. However, this option should be reserved for patients with minimal disease burden. Clinically available options mainly include second-generation tyrosine kinase inhibitors, such as dasatinib and nilotinib. Allogenic stem cell transplantations (for eligible patients) also should be considered. The disease and patient characteristics at the time of imatinib failure should be evaluated before choosing second-line therapy to optimize the therapeutic benefit without unnecessary delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Comprehensive Cancer Network (2008) Chronic myelogenous leukemia V.I.2008. NCCN Clinical Practice Guidelines in Oncology. http://www.nccn.org/professionals/physician_gls/PDF/cml.pdf. Accessed 19 Sept 2008

  2. European LeukemiaNet (2008) Management of chronic myeloid leukemia (CML): recommendations from the European LeukemiaNet (ELN). http://www.leukemia-net.org/content/leukemias/cml/standards_sops/recommendations/. Accessed 2 Sept 2008

  3. Griffin JD, Todd RF III, Ritz J, Nadler LM, Canellos GP, Rosenthal D et al (1983) Differentiation patterns in the blastic phase of chronic myeloid leukemia. Blood 61(1):85–91

    CAS  PubMed  Google Scholar 

  4. Bettelheim P, Lutz D, Majdic O, Paietta E, Haas O, Linkesch W et al (1985) Cell lineage heterogeneity in blast crisis of chronic myeloid leukaemia. Br J Haematol 59(3):395–409

    Article  CAS  PubMed  Google Scholar 

  5. Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340:1330–1340

    Article  CAS  PubMed  Google Scholar 

  6. Kantarjian HM, Talpaz M (1988) Definition of the accelerated phase of chronic myelogenous leukemia. J Clin Oncol 6(1):180–182

    CAS  PubMed  Google Scholar 

  7. Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497

    Google Scholar 

  8. Rowley JD (1973) A new consistent abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290−293

    Article  PubMed  Google Scholar 

  9. Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247:1079−1082

    Article  PubMed  Google Scholar 

  10. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N et al (1993) BCRABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75:175–185

    CAS  PubMed  Google Scholar 

  11. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG et al (1994) Bcr-Abi oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 13:764–773

    CAS  PubMed  Google Scholar 

  12. Marais R, Light Y, Paterson HF, Marshall CJ (1995) Ras remits Raf-I to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 14:3136–3145

    CAS  PubMed  Google Scholar 

  13. Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G et al (1995) Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86:726–736

    CAS  PubMed  Google Scholar 

  14. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK et al (1997) Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 16:6151–6161

    Article  CAS  PubMed  Google Scholar 

  15. Franke TF, Kaplan DR, Cantley LC (1997) PBK: downstream AKTion blocks apoptosis. Cell 88:435–437

    Article  CAS  PubMed  Google Scholar 

  16. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL (1996) Constitutive activation of STAT5 by the Bcr-Abl oncogene in chronic myelogenous leukemia. Oncogene 13:247–254

    CAS  PubMed  Google Scholar 

  17. Haria RL Jr, Van Etten RA (1996) P2IO and PI90(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 271:31704–31710

    Article  Google Scholar 

  18. Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE et al (2002) The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 21:5766–5774

    Article  CAS  PubMed  Google Scholar 

  19. Menssen A, Hermeking H (2002) Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA 99:6274–6279

    Article  CAS  PubMed  Google Scholar 

  20. Sawyers CL, Callahan W, Witte ON (1992) Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70:901–910

    Article  CAS  PubMed  Google Scholar 

  21. Alar DE, Goga A, McLaughlin J, Witte ON, Sawyers CL (1994) Differential complementation of Bcr-Abl point mutants with c-Myc. Science 264:424–426

    Article  Google Scholar 

  22. Skorski T, Nieborowska-Skorska M, Wlodarski P, Perrotti D, Martinez R, Wasik MA et al (1996) Blastic transformation of p53-deficient bone marrow cells by p2lObcr/abl tyrosine kinase. Proc Natl Acad Sci USA 93:13137–13142

    Article  CAS  PubMed  Google Scholar 

  23. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:2737

    Article  Google Scholar 

  24. Beck Z, Kiss A, Tóth FD, Szabó J, Bácsi A, Balogh E et al (2000) Alterations ofP53 and RB genes and the evolution of the accelerated phase of chronic myeloid leukemia. Leuk Lymphoma 38:587–597

    CAS  PubMed  Google Scholar 

  25. Sherr C, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2(2):103–112

    Article  CAS  PubMed  Google Scholar 

  26. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348:994−1004

    PubMed  Google Scholar 

  27. Novartis Pharmaceuticals Corporation (2007) Imatinib prescribing information. http://www.pharma.us.novartis.com/product/pi/pdf/gleevec_tabs.pdf Accessed 16 Oct 2008

  28. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. (2009) Chronic Myelogenous Leukemia http://www.nccn.org/professionals/physician_gls/PDF/cml.pdf. Accessed 15 Oct 2008

  29. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408−2417

    Article  PubMed  Google Scholar 

  30. Hamdan MY, Sanders L, Oliveria S, Campbell U, Willey V, Hirji I et al (2007) Discontinuation and dose modification of imatinib in clinical practice. J Clin Oncol 25(18S):7045

    Google Scholar 

  31. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG et al (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myeloid leukemia in myeloid blast crisis: results of a phase II study. Blood 99:3530–3539

    Article  CAS  PubMed  Google Scholar 

  32. Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F et al (2002) Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99:1928–1937

    Article  CAS  PubMed  Google Scholar 

  33. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346:645–652

    Article  CAS  PubMed  Google Scholar 

  34. Kantarjian HM, Talpaz M, O’Brien S, Giles F, Garcia-Manero G, Faderl S et al (2003) Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood 101(2):473–475

    Article  CAS  PubMed  Google Scholar 

  35. Zonder JA, Pemberton P, Brandt H, Mohamed AN, Schiffer CA (2003) The effect of dose increase of imatinib mesylate in patients with chronic or accelerated phase chronic myelogenous leukemia with inadequate hematologic or cytogenetic response to initial treatment. Clin Cancer Res 9(6):2092–2097

    CAS  PubMed  Google Scholar 

  36. Kantarjian HM, Hochhaus A, Cortes J, Martinelli G, Bhalla KN, Giles FJ et al (2007) Nilotinib is highly active and safe in chronic phase chronic myelogenous leukemia patients with imatinib-resistance or intolerance. Blood 110:226a (abstract 735)

    Google Scholar 

  37. Marin D, Goldman JM, Olavarria E, Apperley JF (2003) Transient benefit only from increasing the imatinib dose in CML patients who do not achieve complete cytogenetic remissions on conventional doses. Blood 102(7):2702–2703

    Article  CAS  PubMed  Google Scholar 

  38. Jabbour E, Kantarjian H, Atallah E, Borthakur G, Wierda W, Faderl S et al (2007) Impact of imatinib mesylate dose escalation on resistance and sub-optimal responses to standard-dose therapy in patients (pts) with chronic myeloid leukemia (CML). Blood 110:1035

    Article  Google Scholar 

  39. Hochhaus A, Kreil S, Corbin AS, La Rosée P, Müller MC, Lahaye T et al (2002) Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16:2190–2196

    Article  CAS  PubMed  Google Scholar 

  40. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R et al (2003) BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101:690–698

    Article  CAS  PubMed  Google Scholar 

  41. White DL, Saunders VA, Dang P, Engler J, Zannettino AC, Cambareri AC et al (2006) OCT-1–mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 108(2):697–704

    Article  CAS  PubMed  Google Scholar 

  42. Goldman J, Gordon M (2006) Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter? Leuk Lymphoma 47(1):1–7

    Article  CAS  PubMed  Google Scholar 

  43. Cortes J, Giles F, O’Brien S (2003) Result of high-dose imatinib mesylate in patients with Philadelphia chromosome-positive chronic myeloid leukemia after failure of interferon-alpha. Blood 102(1):83–86

    Article  CAS  PubMed  Google Scholar 

  44. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  CAS  PubMed  Google Scholar 

  45. Kantarjian HM, Talpaz M, O’Brien S, Garcia-Manero G, Verstovsek S, Giles F et al (2004) High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome–positive chronic phase chronic myeloid leukemia. Blood 103:2873–2878

    Article  CAS  PubMed  Google Scholar 

  46. Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D et al (2004) Requirement of Src kinases Lyn, Hck and Fgr for Bcr-Abll-induced B-Iymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 36(5):453–461

    Article  CAS  PubMed  Google Scholar 

  47. Ptasznik A, Nakata Y, Kalota A, Emerson SG, Gewirtz AM (2004) Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABLI(+) leukemia cells. Nat Med 10(11):1187–1189

    Article  CAS  PubMed  Google Scholar 

  48. Cortes J, Rousselot P, Kim DW, Ritchie E, Hamerschlak N, Coutre S et al (2007) Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood 109:3207−3213

    Article  PubMed  Google Scholar 

  49. Guilhot F, Apperley J, Kim DW, Bullorsky EO, Baccarani M, Roboz GJ et al (2007) Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood 109:4143−4150

    PubMed  Google Scholar 

  50. Hochhaus A, Kantarjian HM, Baccarani M, Lipton JH, Apperley JF, Druker BJ et al (2007) Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood 109:2303−2309

    Article  PubMed  Google Scholar 

  51. Kantarjian H, Pasquini R, Hamerschlak N, Rousselot P, Holowiecki J, Jootar S et al (2007) Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia after failure of frontline imatinib: a randomized phase 2 trial. Blood 109:5143–5150

    Article  CAS  PubMed  Google Scholar 

  52. Ottmann O, Dombret H, Martinelli G, Simonsson B, Guilhot F, Larson RA et al (2007) Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood 110:2309−2315

    Article  PubMed  Google Scholar 

  53. Mauro MJ, Baccarani M, Cervantes F, Lipton JH, Matloub Y, Sinha R et al (2008) Dasatinib 2-year efficacy in patients with chronic-phase chronic myelogenous leukemia (CML-CP) with resistance or intolerance to imatinib (START-C). J Clin Oncol 26(suppl):7009a

    Google Scholar 

  54. Shah NP, Rousselot P, Pasquini R, Hamerschlak N, Holowiecki J, Gerard B et al (2006) Dasatinib (D) vs high dose imatinib (lM) in patients with chronic phase chronic myeloid leukemia (CP-CML) resistant to imatinib. Results of CA180017 START-R randomized trial. Proc Am Soc Clin Oncol 24:abstract 6507

    Google Scholar 

  55. Martinelli G, Rousselot P, Robak T, Masszi T, Skotnicki A, Hellmann A et al (2007) Comparison of dasatinib to high-dose imatinib in patients who experience imatinib failure: results from a randomized, phase-II trial (CA180017, START-R). Haematologica 92:abstract 0862

    Google Scholar 

  56. Bristol-Myers Squibb Company (2007) Dasatinib prescribing information. http://packageinserts.bms.com/pi/pi_sprycel.pdf. Accessed 16 Oct 2008

  57. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al (2006) Dasatinib in imatinib-resistant Philadelphia chromosomepositive leukemias. N Engl J Med 354:2531–2541

    Article  CAS  PubMed  Google Scholar 

  58. Luo FR, Yang Z, Camuso A, Smykla R, McGlinchey K, Fager K et al (2006) Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin Cancer Res 12:7180–7186

    Article  CAS  PubMed  Google Scholar 

  59. Shah NP, Kantarjian HM, Kim DW, Réa D, Dorlhiac-Llacer PE, Milone JH, et al (2008) Intermittent target inhibition with dasatinib (100 mg once daily) preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J Clin Oncol In press

  60. Kantarjian HM, Giles F, Gatterman N (2007) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome–positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110:3540–3546

    Article  CAS  PubMed  Google Scholar 

  61. Kantarjian HM, Giles FJ, Hochhaus A, Bhalla KN, Ossenkoppele GJ, Gattermann N et al (2008) Nilotinib in patients with imatinib-resistant or -intolerant chronic myelogenous leukemia in chronic phase (CML-CP): updated phase II results. J Clin Oncol 26(15S):7010

    Google Scholar 

  62. Giles FJ, Larson RA, Kantarjian HM, le Coutre P, Baccarani M, Haque A et al (2007) Nilotinib in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in blast crisis who are resistant or intolerant to imatinib. Blood 110:310a (abstract 1025)

    Google Scholar 

  63. le Coutre P, Ottmann OG, Giles F, Kim DW, Cortes J, Gattermann N et al (2008) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood 111:1834–1839

    Article  PubMed  Google Scholar 

  64. Novartis Pharmaceuticals Corporation. (2007) Nilotinib prescribing information. http://www.pharma.us.novartis.com/product/pi/pdf/tasigna.pdf Accessed 16 Oct 2008

  65. Gambacorti-Passerini C, Kantarjian H, Bruemmendorf T, Martinelli G, Baccarani M, Fischer T et al (2007) Bosutinib (SKI-606) demonstrates clinical activity and is well tolerated among patients with AP and BP CML and Ph+ ALL. Blood 110:146a (abstract 473)

    Google Scholar 

  66. Golas JM, Arndt K, Etienne C, Lucas J, Nardin D, Gibbons J et al (2003) SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res 63:375–381

    CAS  PubMed  Google Scholar 

  67. Kimura S, Naito H, Segawa H, Kuroda J, Yuasa T, Sato K et al (2005) NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood 106:3948–3954

    Article  CAS  PubMed  Google Scholar 

  68. Kantarjian HM, Cortes J, le Coutre P, Nagler A, Pinilla J, Hochhaus A et al (2007) A phase I study of INNO-406 in patients with advanced Philadelphia (Ph+) chromosome-positive leukemias who are resistant or intolerant to imatinib and second generation tyrosine kinase inhibitors. Blood 110:144a (abstract 469)

    Google Scholar 

  69. Craig AR, Kantarjian HM, Cortes JE, Jones D, Hochhaus A, O’Brien S et al (2007) A phase I study of INNO-406, a dual inhibitor of Abl and Lyn kinases, in adult patients with Philadelphia chromosome positive (Ph+) chronic myelogenous leukemia (CML) or acute lymphocytic leukemia (ALL) relapsed, refractory, or intolerant of imatinib. J Clin Oncol 25(18S):7046

    Google Scholar 

  70. Kantarjian HM, O’Brien S, Cortes J, Giles FJ, Faderl S, Issa JP et al (2003) Results of decitabine (5’-aza-2’deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer 98:522–528

    Article  CAS  PubMed  Google Scholar 

  71. Issa JP, Gharibyan V, Cortes J, Jelinek J, Morris G, Verstovsek S et al (2005) Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol 23:3948–3956

    Article  CAS  PubMed  Google Scholar 

  72. Benichou A, Khoury HJ, Corm S, Nicolini FE, Craig AR, Humphriss E et al (2008) Multicenter open label study of subcutaneous (SC) omacetaxine (OMA) in imatinib (IM)-resistant chronic myeloid leukemia (CML) patients (Pts) with the T315I mutation. J Clin Oncol 26(15S):7021

    Google Scholar 

  73. Oki Y, Kantarjian HM, Gharibyan V, Jones D, O’Brien S, Verstovsek S et al (2007) Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. Cancer 109:899–906

    Article  CAS  PubMed  Google Scholar 

  74. Jabbour E, Cortes J, Kantarjian HM, Giralt S, Jones D, Jones R et al (2006) Allogeneic stem cell transplantation for patients with chronic myeloid leukemia and acute lymphocytic leukemia after Bcr-Abl kinase mutation-related imatinib failure. Blood 108(4):1421–1423

    Article  CAS  PubMed  Google Scholar 

  75. Jabbour E, Kantarjian H, Jones D, Breeden M, Garcia-Manero G, O’Brien S et al (2008) Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy. Blood 112:53–55

    Article  CAS  PubMed  Google Scholar 

  76. Soverini S, Colarossi S, Gnani A, Rosti G, Castagnetti F, Poerio A et al (2006) Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res 12:7374–7379

    Article  CAS  PubMed  Google Scholar 

  77. Hughes T, Saglio G, Martinelli G, Kim DW, Soverini S, Mueller M et al (2007) Responses and disease progression in CML-CP patients treated with nilotinib after imatinib failure appear to be affected by the BCR-ABL mutation status and types. Blood 110(11):320

    Google Scholar 

Download references

Conflict of interest statement

The authors of this manuscript have chosen not to provide information regarding any potential conflict of interest.

Acknowledgement

Editorial and writing support was provided by Gardiner-Caldwell U.S., funded by Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Jabbour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabbour, E., Cortes, J. & Kantarjian, H. Treatment selection after imatinib resistance in chronic myeloid leukemia. Targ Oncol 4, 3–10 (2009). https://doi.org/10.1007/s11523-008-0100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-008-0100-y

Keywords

Navigation