Skip to main content
Log in

Functional inactivation of CD4+CD25high regulatory T cells using low dose human/mouse chimeric anti-CD25 monoclonal antibody enhanced lymphokine-activated killer cells activity

  • Original Research
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Functional modulation of regulatory T cells (T-regs) is one possible approach to cancer immunotherapy. In this study, we investigated whether low-dose basiliximab, a chimeric anti-CD25 monoclonal antibody, could suppress the T-regs function not by depletion but by inactivation, and increase immune responses. Peripheral blood mononuclear cells from healthy donors and patients with malignancy were collected. We tried T-regs inactivation using various concentrations of basiliximab before induction of lymphokine-activated killer (LAK) cells. We measured cell proliferation, lymphocyte phenotype, intracellular T-regs maker, and Th1/2 cytokines production. Our results showed that the optimal concentration of basiliximab for specifically down-modulating only T-regs was 0.001 μg/ ml. The reduction of Th-2 cytokine secretion with concomitant APC induction without suppressing cell proliferation offers the promise of a novel adoptive immunotherapy to cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosenberg SA, Lotze MT, Muul LM et al (1985) Observation on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313:1485–1492

    PubMed  CAS  Google Scholar 

  2. Rosenberg SA, Packard BS, Aebersold PM et al (1988) Use of tumor infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319:1676–1680

    CAS  Google Scholar 

  3. Aruga A, Yamauchi K, Takasaki K et al (1991) Induction of autologous tumor-specific cytotoxic T cells in patients with liver cancer. Int J Cancer 49:19–24

    Article  PubMed  CAS  Google Scholar 

  4. Kono K, Takahashi A, Sugai H et al (2002) Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. Clin Cancer Res. 8:3394–3400

    PubMed  CAS  Google Scholar 

  5. Boczkowski D, Nair SK, Synder D et al (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184:465–472

    Article  PubMed  CAS  Google Scholar 

  6. Yamaguchi Y, Ohshita A, Kawabuchi Y et al (2003) Adoptive immunotherapy of cancer using activated autologous lymphocytes—current status and new strategies. Hum Cell 16:183–189

    Article  PubMed  Google Scholar 

  7. Dudley ME, Wunderlich JR, Yang JC et al (2002) A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother 25:243–251

    Article  PubMed  CAS  Google Scholar 

  8. Dudley ME, Wunderlich JR, Yang JC et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357

    Article  PubMed  CAS  Google Scholar 

  9. Phan GQ, Yang JC, Sherry RM et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA. 100:8372–8377

    Article  PubMed  CAS  Google Scholar 

  10. Dannull J, Su Z, Rizzieri D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633

    Article  PubMed  CAS  Google Scholar 

  11. Augulo R, Fulcher DA (1998) Measurement of Candida-specific blastogenesis: comparison of carboxyfluorescein succinimidyi ester labeling of T cell, Thymidine incorporation and CD69 expression. Cytometry 34:143–151

    Article  Google Scholar 

  12. Katoh M (2002) Expression of human SOX7 in normal tissues and tumors. Int J Mol Med 9:363–368

    PubMed  CAS  Google Scholar 

  13. Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained activated T cells expressing IL-2 receptor α-chains (CD25): breakdown of a single mechanism of self-tolerance caused various autoimmune diseases. J Immunol 155:1151–1164

    PubMed  CAS  Google Scholar 

  14. Shimizu J, Yamasaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    PubMed  CAS  Google Scholar 

  15. Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4 (+) regulatory cells that control intestinal inflammation. J Exp Med 192:295–302

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi T, Tagami T, Yamazaki S et al (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–310

    Article  PubMed  CAS  Google Scholar 

  17. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor FOXP3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  18. Okawaki M, Yamaguchi Y, Okita R et al (2008) Dose-finding study of anti-CD25 antibody for targeting regulatory T cells in locoregional immunotherapy of malignant effusion. Hiroshima J Med Sci 57:37–46

    PubMed  CAS  Google Scholar 

  19. Rowshani AT, Uss A, Yong SL, Lier RAW, Berge IJM (2004) Effect of CD25 monoclonal antibody on proliferative and effector functions of alloactivated human T cells in vitro. Eur J Immunol 34:882–889

    Article  PubMed  CAS  Google Scholar 

  20. Lenschow DJ, Walunas TL, Bluestone AJ (1996) CD28/B7 system of cell costimulation. Annu. Rev Immunol 14:233–258

    Article  PubMed  CAS  Google Scholar 

  21. Caras I, Grigorescu A, Stavaru C et al (2004) Evidence for immune defects in breast and lung cancer patients. Cancer Immunol Immunother 53:1146–1152

    Article  PubMed  CAS  Google Scholar 

  22. Tabata T, Hazama S, Yoshino S, Oka M (1999) Th2 subset dominance among peripheral blood T lymphocytes in patients with digestive cancers. Am J Surg 177:203–208

    Article  PubMed  CAS  Google Scholar 

  23. Kudo-Saito C, Schlom J, Camphausen K et al (2005) The requirement of multimodal therapy (vaccine, local tumor radiation, and reduction of suppressor cells) to eliminate established tumors. Clin Cancer Res 11:4533–4544

    Article  PubMed  CAS  Google Scholar 

  24. Waterhouse P, Penninger JM, Timms E (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Y. Nakatani, M. Funada, and M. Okamura for excellent technical assistance. This study proceeded at the Analysis Center for Life Science, Hiroshima University.

Conflict of interest statement

No funds were received in support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riki Okita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okita, R., Yamaguchi, Y., Ohara, M. et al. Functional inactivation of CD4+CD25high regulatory T cells using low dose human/mouse chimeric anti-CD25 monoclonal antibody enhanced lymphokine-activated killer cells activity. Targ Oncol 3, 227–234 (2008). https://doi.org/10.1007/s11523-008-0095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-008-0095-4

Keywords

Navigation