Skip to main content
Log in

Optimizing antiangiogenic strategies: combining with radiotherapy

  • Perspectives
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Tumor response to radiotherapy is influenced by many tumoral intracellular biological factors whose deregulation leads to the modulation of tumor sensitivity to radiotherapy. However, the pathways controlling intracellular radiation resistance are activated by or display common pathways with many factors also controlling the tumoral microenvironment, and particularly angiogenesis. One of the innovative strategies that could improve response to irradiation of aggressive or radiotherapy-insensitive tumors consists of combining radiotherapy with inhibitors of the angiogenesis pathways. This review details four main reasons for this: angiogenic factors control intracellular radioresistance, endothelial cell radiosensitivity controls tumor radiosensitivity, tumor angiogenesis is the cause of hypoxia, a major radiation resistance factor, and stem cells, known to be radiation resistant, are dependent on angiogenic factors. We describe the implication of different factors in the various mechanisms leading to radiation resistance. These factors include vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and fibroblast growth factor 2 (FGF2), along with αvβ3 and αvβ5 integrins as well as their downstream cellular pathways including some small G proteins. The review also explains the radiation-sensitizing effect of the inhibition of these factors by targeted therapies. The optimal sequences of administration between antiangiogenics and radiotherapy are partially elucidated. The success of these combinations will depend on the specific study of the mechanisms of action of antiangiogenic agents and their interaction with ionizing radiations, and on the use in preclinical and clinical studies of metabolic and functional imaging. These techniques represent an essential tool for determining the optimal combination sequence followed by the assessment of these combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen-Jonathan E, Toulas C, Monteil S et al (1997) Radioresistance induced by the high molecular forms of the basic fibroblast growth factor is associated with an increased G2 delay and a hyperphosphorylation of p34CDC2 in HeLa cells. Cancer Res 57:1364–1370

    PubMed  CAS  Google Scholar 

  2. Ader I, Muller C, Bonnet J et al (2002) The radioprotective effect of the 24 kDa FGF-2 isoform in HeLa cells is related to an increased expression and activity of the DNA dependent protein kinase (DNA-PK) catalytic subunit. Oncogene 21:6471–6479

    Article  PubMed  CAS  Google Scholar 

  3. Ader I, Toulas C, Dalenc F et al (2002) RhoB controls the 24 kDa FGF-2-induced radioresistance in HeLa cells by preventing post-mitotic cell death. Oncogene 21:5998–6006

    Article  PubMed  CAS  Google Scholar 

  4. Fritz G, Kaina B (1997) RhoB encoding a UV-inducible Ras-related small GTP-binding protein is regulated by GTPases of the Rho family and independent of JNK, ERK, and p38 MAP kinase. J Biol Chem 272:30637–30644

    Article  PubMed  CAS  Google Scholar 

  5. Skuli N, Monferran S, Delmas C et al (2006) Activation of RhoB by hypoxia controls hypoxia-inducible factor-1alpha stabilization through glycogen synthase kinase-3 in U87 glioblastoma cells. Cancer Res 66:482–489

    Article  PubMed  CAS  Google Scholar 

  6. de Cremoux P, Gauville C, Closson V et al (1994) EGF modulation of the ras-related rhoB gene expression in human breast-cancer cell lines. Int J Cancer 59:408–415

    Article  PubMed  Google Scholar 

  7. Milia J, Teyssier F, Dalenc F et al (2005) Farnesylated RhoB inhibits radiation-induced mitotic cell death and controls radiation-induced centrosome overduplication. Cell Death Differ 12:492–501

    Article  PubMed  CAS  Google Scholar 

  8. Delmas C, Heliez C, Cohen-Jonathan E et al (2002) Farnesyltransferase inhibitor, R115777, reverses the resistance of human glioma cell lines to ionizing radiation. Int J Cancer 100:43–48

    Article  PubMed  CAS  Google Scholar 

  9. Ader I, Delmas C, Bonnet J et al (2003) Inhibition of Rho pathways induces radiosensitization and oxygenation in human glioblastoma xenografts. Oncogene 22:8861–8869

    Article  PubMed  CAS  Google Scholar 

  10. Bredel M, Pollack IF, Campbell JW et al (1997) Basic fibroblast growth factor expression as a predictor of prognosis in pediatric high-grade gliomas. Clin Cancer Res 3:2157–2164

    PubMed  CAS  Google Scholar 

  11. Fukui S, Nawashiro H, Otani N et al (2003) Nuclear accumulation of basic fibroblast growth factor in human astrocytic tumors. Cancer 97:3061–3067

    Article  PubMed  CAS  Google Scholar 

  12. Schmidt-Ullrich RK, Mikkelsen RB, Dent P et al (1997) Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 15:1191–1197

    Article  PubMed  CAS  Google Scholar 

  13. Harari PM, Huang SM (2001) Head and neck cancer as a clinical model for molecular targeting of therapy: combining EGFR blockade with radiation. Int J Radiat Oncol Biol Phys 49:427–433

    Article  PubMed  CAS  Google Scholar 

  14. Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–578

    Article  PubMed  CAS  Google Scholar 

  15. Gloe T, Sohn HY, Meininger GA et al (2002) Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interaction via integrin alpha(v)beta3. J Biol Chem 277:23453–23458

    Article  PubMed  CAS  Google Scholar 

  16. Abdollahi A, Griggs DW, Zieher H et al (2005) Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 11:6270–6279

    Article  PubMed  CAS  Google Scholar 

  17. Gruber G, Hess J, Stiefel C et al (2005) Correlation between the tumoral expression of beta3-integrin and outcome in cervical cancer patients who had undergone radiotherapy. Br J Cancer 92:41–46

    Article  PubMed  CAS  Google Scholar 

  18. Albert JM, Cao C, Geng L et al (2006) Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 65:1536–1543

    Article  PubMed  CAS  Google Scholar 

  19. Wild-Bode C, Weller M, Rimner A et al (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750

    PubMed  CAS  Google Scholar 

  20. Garcia-Barros M, Paris F, Cordon-Cardo C et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  PubMed  CAS  Google Scholar 

  21. Haimovitz-Friedman A, Balaban N, McLoughlin M et al (1994) Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Res 54:2591–2597

    PubMed  CAS  Google Scholar 

  22. Haimovitz-Friedman A, Vlodavsky I, Chaudhuri A et al (1991) Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res 51:2552–2558

    PubMed  CAS  Google Scholar 

  23. Gorski DH, Beckett MA, Jaskowiak NT et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59:3374–3378

    PubMed  CAS  Google Scholar 

  24. Kermani P, Leclerc G, Martel R et al (2001) Effect of ionizing radiation on thymidine uptake, differentiation, and VEGFR2 receptor expression in endothelial cells: the role of VEGF(165). Int J Radiat Oncol Biol Phys 50:213–220

    Article  PubMed  CAS  Google Scholar 

  25. Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5:423–435

    Article  PubMed  CAS  Google Scholar 

  26. Brizel DM, Sibley GS, Prosnitz LR et al (1997) Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 38:285–289

    Article  PubMed  CAS  Google Scholar 

  27. Brizel DM, Scully SP, Harrelson JM et al (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943

    PubMed  CAS  Google Scholar 

  28. Hockel M, Knoop C, Schlenger K et al (1994) Intratumoral pO2 histography as predictive assay in advanced cancer of the uterine cervix. Adv Exp Med Biol 345:445–550

    PubMed  CAS  Google Scholar 

  29. Hockel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    PubMed  CAS  Google Scholar 

  30. Thorwarth D, Eschmann SM, Paulsen F et al (2007) Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 68:291–300

    PubMed  Google Scholar 

  31. Rischin D, Hicks RJ, Fisher R et al (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24:2098–2104

    Article  PubMed  Google Scholar 

  32. Koch CJ, Evans SM (2003) Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv Exp Med Biol 510:285–292

    PubMed  CAS  Google Scholar 

  33. Ansiaux R, Baudelet C, Jordan BF et al (2005) Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clin Cancer Res 11:743–750

    PubMed  CAS  Google Scholar 

  34. Segers J, Fazio VD, Ansiaux R et al (2006) Potentiation of cyclophosphamide chemotherapy using the anti-angiogenic drug thalidomide: importance of optimal scheduling to exploit the ‘normalization’ window of the tumor vasculature. Cancer Lett 244:129–135

    Article  PubMed  CAS  Google Scholar 

  35. Bernsen HJ, Rijken PF, Peters JP et al (1999) Suramin treatment of human glioma xenografts; effects on tumor vasculature and oxygenation status. J Neurooncol 44:129–136

    Article  PubMed  CAS  Google Scholar 

  36. Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    PubMed  CAS  Google Scholar 

  37. Kadambi A, Mouta CC, Yun CO et al (2001) Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: role of VEGF-receptor 2 and host VEGF-A. Cancer Res 61:2404–2408

    PubMed  CAS  Google Scholar 

  38. Tong RT, Boucher Y, Kozin SV et al (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:3731–3736

    Article  PubMed  CAS  Google Scholar 

  39. Delmas C, End D, Rochaix P et al (2003) The farnesyltransferase inhibitor R115777 reduces hypoxia and matrix metalloproteinase 2 expression in human glioma xenograft. Clin Cancer Res 9:6062–6068

    PubMed  CAS  Google Scholar 

  40. Skuli N, Monferran S, Delmas C, Favre G, Bonnet J, Toulas C, Cohen-Jonathan-Moyal E (2007) avb3 and avb5 integrins control hypoxia through FAK and RhoB in glioma. J Clin Invest, submitted

  41. Cohen-Jonathan Moyal E, Laprie A, Delannes M et al (2007) Phase I trial of tipifarnib (R115777) concurrent with radiotherapy in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 67:1008–1019

  42. Laprie A, Catalaa I, Cassol E, McKnight TR, Berchery D, Marre D, Bachaud JM, Berry I, Cohen-Jonathan Moyal E (2007) Int J Radiat Oncol Biol Phys, in press

  43. Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    Article  PubMed  CAS  Google Scholar 

  44. Willett CG, Duda DG, di Tomaso E et al (2007) Complete pathological response to bevacizumab and chemoradiation in advanced rectal cancer. Nat Clin Pract Oncol 4:316–321

    Article  PubMed  CAS  Google Scholar 

  45. Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  PubMed  CAS  Google Scholar 

  46. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  47. Lee J, Kotliarova S, Kotliarov Y et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    Article  PubMed  CAS  Google Scholar 

  48. Folkins C, Man S, Xu P et al (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67:3560–3564

    Article  PubMed  CAS  Google Scholar 

  49. Horsman MR, Siemann DW (2006) Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res 66:11520–11539

    Article  PubMed  CAS  Google Scholar 

  50. Senan S, Smit EF (2007) Design of clinical trials of radiation combined with antiangiogenic therapy. Oncologist 12:465–477

    Article  PubMed  CAS  Google Scholar 

  51. Fenton BM, Paoni SF, Ding I (2004) Effect of VEGF receptor-2 antibody on vascular function and oxygenation in spontaneous and transplanted tumors. Radiother Oncol 72:221–230

    Article  PubMed  CAS  Google Scholar 

  52. Williams KJ, Telfer BA, Brave S et al (2004) ZD6474, a potent inhibitor of vascular endothelial growth factor signaling, combined with radiotherapy: schedule-dependent enhancement of antitumor activity. Clin Cancer Res 10:8587–8593

    Article  PubMed  CAS  Google Scholar 

  53. Murata R, Nishimura Y, Hiraoka M (1997) An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int J Radiat Oncol Biol Phys 37:1107–1113

    Article  PubMed  CAS  Google Scholar 

  54. Weppler SA, Krause M, Zyromska A et al (2007) Response of U87 glioma xenografts treated with concurrent rapamycin and fractionated radiotherapy: possible role for thrombosis. Radiother Oncol 82:96–104

    Article  PubMed  CAS  Google Scholar 

  55. Wachsberger PR, Burd R, Marero N et al (2005) Effect of the tumor vascular-damaging agent, ZD6126, on the radioresponse of U87 glioblastoma. Clin Cancer Res 11:835–842

    PubMed  CAS  Google Scholar 

  56. Riesterer O, Honer M, Jochum W et al (2006) Ionizing radiation antagonizes tumor hypoxia induced by antiangiogenic treatment. Clin Cancer Res 12:3518–3524

    Article  PubMed  CAS  Google Scholar 

  57. Murata R, Siemann DW, Overgaard J et al (2001) Interaction between combretastatin A-4 disodium phosphate and radiation in murine tumors. Radiother Oncol 60:155–161

    Article  PubMed  CAS  Google Scholar 

  58. Murata R, Siemann DW, Overgaard J et al (2001) Improved tumor response by combining radiation and the vascular-damaging drug 5,6-dimethylxanthenone-4-acetic acid. Radiat Res 156:503–509

    Article  PubMed  CAS  Google Scholar 

  59. Cohen-Jonathan E, Muschel RJ, Gillies MW et al (2000) Farnesyltransferase inhibitors potentiate the antitumor effect of radiation on a human tumor xenograft expressing activated HRAS. Radiat Res 154:125–132

    Article  PubMed  CAS  Google Scholar 

  60. Czito BG, Bendell JC, Willett CG et al (2007) Bevacizumab, oxaliplatin, and capecitabine with radiation therapy in rectal cancer: Phase I trial results. Int J Radiat Oncol Biol Phys 68:472–478

    PubMed  CAS  Google Scholar 

  61. Crane CH, Ellis LM, Abbruzzese JL et al (2006) Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capecitabine in locally advanced pancreatic cancer. J Clin Oncol 24:1145–1151

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

No funds were received in support of this study and no benefits in any form have or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cohen-Jonathan Moyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen-Jonathan Moyal, E. Optimizing antiangiogenic strategies: combining with radiotherapy. Targ Oncol 3, 51–56 (2008). https://doi.org/10.1007/s11523-007-0068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-007-0068-z

Keywords

Navigation