Skip to main content
Log in

Biological significance of myeloperoxidase (MPO) on green tea component, (−)-epigallocatechin-3-gallate (EGCG)-induced apoptosis: its therapeutic potential for myeloid leukemia

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

The therapeutic approach to acute myeloid leukemia (AML) is usually chemotherapy, but severe side effects and complications induced by the anticancer drugs are sometimes fatal and are major problems in the clinical setting. Recently, more specifically targeted agents have been developed for the treatment of AML; however, most candidate agents for targeted therapy have yet to be translated into clinical application. Natural compounds appear to be safer than the current chemotherapeutic agents. Recently, it has been reported that reactive oxygen species (ROS) produced by natural compounds such as (−)-epigallocatechin-3-gallate (EGCG) induce apoptosis in myeloid leukemic cells. EGCG markedly induced apoptosis of myeloperoxidase (MPO)-positive myeloid leukemic cells. Treatment with EGCG caused a significant ROS production in MPO-positive leukemic cells. ROS are now thought of as signaling molecules in response to various extracellular stimuli. On the other hand, ROS may be the direct mediator of EGCG-induced apoptosis in myeloid leukemic cells. In particular, highly toxic ROS such as hydroxyl radical (·OH) generated via the H2O2/MPO halide system may directly mediate oxidative stress-induced apoptosis in myeloid leukemic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tallman MS, Gilliland DG, Rowe JM (2005) Drug therapy for acute myeloid leukemia. Blood 106:1154–1163

    Article  PubMed  CAS  Google Scholar 

  2. Weick JK, Kopecky KJ, Appelbaum FR et al (1996) A randomized investigation of high-dose cytarabine in induction in acute myeloid leukemia. Blood 88:2841–2851

    PubMed  CAS  Google Scholar 

  3. Cassileth PA, Harrington DP, Appelbaum FR et al (1998) Chemotherapy compared with autologous bone-marrow transplantation in the management of acute myeloid leukemia in first remission. N Engl J Med 339:1649–1656

    Article  PubMed  CAS  Google Scholar 

  4. Harousseau JL, Cahn JY, Pignon B et al (1997) Comparison of autologous bone marrow transplantation and intensive therapy as postremission therapy in adult acute myeloid leukemia. Blood 90:2978–2986

    PubMed  CAS  Google Scholar 

  5. Estey E (2004) Clinical trials in AML of the elderly: should we change our methodology? Leukemia 18:1772–1774

    Article  PubMed  CAS  Google Scholar 

  6. Appelbaum FR, Gundacker HM, Head DR et al (2006) Age and acute myeloid leukemia. Blood 107:3481–3485

    Article  PubMed  CAS  Google Scholar 

  7. Buchner T, Berdel WE, Wormann B et al (2005) Treatment of older patients with AML. Crit Rev Oncol Hematol 56:247–259

    Article  PubMed  Google Scholar 

  8. Smith SM, Le Beau MM, Huo D et al (2003) Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood 102:43–52

    Article  PubMed  CAS  Google Scholar 

  9. Gojo I, Karp JE (2001) The impact of biology on the treatment of secondary AML. Cancer Treat Res 108:231–255

    PubMed  CAS  Google Scholar 

  10. Levine EG, Bloomfield CD (1992) Leukemias and myelodysplastic syndromes secondary to drug, radiation, and environmental exposure. Semin Oncol 19:47–84

    PubMed  CAS  Google Scholar 

  11. Kantarjian H, O’Brien S, Cortes J et al (2006) Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer 106:1090–1098

    Article  PubMed  Google Scholar 

  12. Huang ME, Ye YC, Chen SR et al (1998) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572

    Google Scholar 

  13. Grignani F, Valtieri M, Gabbianelli M et al (2000) PML/RARα fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood 96:1531–1537

    PubMed  CAS  Google Scholar 

  14. Tallman MS, Nabhan C, Feusner JH et al (2002) Acute promyelocytic leukemia: evolving therapeutic strategies. Blood 99:759–767

    Article  PubMed  CAS  Google Scholar 

  15. Bullinger L, Dohner K, Bair E et al (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350:1605–1616

    Article  PubMed  CAS  Google Scholar 

  16. Valk PJ, Verhaak RG, Beijen MA et al (2004) Prognostically useful gene- expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628

    Article  PubMed  CAS  Google Scholar 

  17. Grimwade D, Haferlach T (2004) Gene expression profiling in acute myeloid leukemia. N Engl J Med 350:1676–1678

    Article  PubMed  CAS  Google Scholar 

  18. Ley TJ, Minx PJ, Walter MJ et al (2003) A pilot study of high-throughput, sequence-based mutational profiling of primary human acute myeloid leukemia cell genomes. Proc Natl Acad Sci U S A 100:14275–14280

    Article  PubMed  CAS  Google Scholar 

  19. Goldman JM, Melo JV (2001) Targeting the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1084–1086

    Article  PubMed  CAS  Google Scholar 

  20. Kizaki M, Ueno H, Yamazoe Y et al (1996) Mechanisms of retinoid resistance in leukemic cells: possible role of cytochrome P450 and P-glycoprotein. Blood 87:725–733

    PubMed  CAS  Google Scholar 

  21. Takayama N, Kizaki M, Hida T et al (2001) Novel mutation in the PML/RARα chimeric gene exhibits dramatically decreased ligand-binding activity and confers acquired resistance to retinoic acid in acute promyelocytic leukemia. Exp Hematol 29:864–872

    Article  PubMed  CAS  Google Scholar 

  22. Gorre ME, Mohammed M, Ellwood K et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  PubMed  CAS  Google Scholar 

  23. Papa S, Skulachev VP (1997) Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174:305–319

    Article  PubMed  CAS  Google Scholar 

  24. Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    Article  PubMed  CAS  Google Scholar 

  25. Chapple IL (1997) Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 24:287–296

    Article  PubMed  CAS  Google Scholar 

  26. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186

    Article  PubMed  CAS  Google Scholar 

  27. Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254

    Article  PubMed  CAS  Google Scholar 

  28. Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98:2603–2614

    Article  PubMed  CAS  Google Scholar 

  29. Bigelow DJ, Squier TC (2005) Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochem Biophys Acta 1703:121–134

    PubMed  CAS  Google Scholar 

  30. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunology Today 15:7–10

    Article  PubMed  CAS  Google Scholar 

  31. Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21:83–86

    PubMed  CAS  Google Scholar 

  32. Clutton S (1997) The importance of oxidative stress in apoptosis. Br Med Bull 53:662–668

    PubMed  CAS  Google Scholar 

  33. Ueda S, Masutani H, Nakamura H et al (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414

    Article  PubMed  CAS  Google Scholar 

  34. Tobiume K, Matsuzawa A, Takahashi T et al (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2:222–228

    Article  PubMed  CAS  Google Scholar 

  35. Nakazato T, Ito K, Miyakawa Y et al (2005) Catechin, a green tea component, rapidly induces apoptosis of myeloid leukemic cells via modulation of reactive oxygen species production in vitro and inhibits tumor growth in vivo. Haematologica 90:317–325

    PubMed  CAS  Google Scholar 

  36. Lea MA, Xiao Q, Sadhukhan AK et al (1996) Inhibitory effects of tea extracts and (−)-epigallocatechin gallate on DNA synthesis and proliferation of hepatoma and erythroleukemia cells. Cancer Lett 68:231–236

    Article  Google Scholar 

  37. Islam S, Islam N, Kermode T et al (2000) Involvement of caspase-3 in epigallocatechin-3-gallate-mediated apoptosis of human chondrosarcoma cells. Biochem Biophys Res Commun 270:793–797

    Article  PubMed  CAS  Google Scholar 

  38. Ahmad N, Feyes DK, Nieminen AL et al (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89:1881–1886

    Article  PubMed  CAS  Google Scholar 

  39. Bertolini F, Fusetti L, Cinieri S et al (2000) Inhibition of angiogenesis and induction of endothelial and tumor cell apoptosis by green tea in animal models of human high-grade non-Hodgkin's lymphoma. Leukemia 14:1477–1482

    Article  PubMed  CAS  Google Scholar 

  40. Pisters KMW, Newman RA, Coldman B et al (2001) Phase I trial of oral green tea extract in adult patients with solid tumors. J Clin Oncol 19:1830–1838

    PubMed  CAS  Google Scholar 

  41. Chow H-HS, Cai Y, Alberts DS et al (2001) Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E. Cancer Epidemiol Biomark Prev 10:53–58

    CAS  Google Scholar 

  42. Nakagawa H, Hasumi K, Woo JT et al (2004) Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (−)-epigallocatechin gallate. Carcinogenesis 25:1567–1574

    Article  PubMed  CAS  Google Scholar 

  43. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    PubMed  CAS  Google Scholar 

  44. Bruno JG, Herman TS, Cano VL et al (1999) Selective cytotoxicity of 3-amino-l-tyrosine correlates with peroxidase activity. In Vitro Cell Biol Anim 35:376–382

    Article  CAS  Google Scholar 

  45. Wagner BA, Buettner GR, Oberley LW et al (2000) Myeloperoxidase is involved in H2O2-induced apoptosis of HL-60 human leukemia cells. J Biol Chem 275:22461–22469

    Article  PubMed  CAS  Google Scholar 

  46. Nakazato T, Sagawa M, Yamato K et al (2007) Myeloperoxidase (MPO) is a key regulator of oxidative stress-mediated apoptosis in myeloid leukemia. Clin Cancer Res 13:5436–5445

    Article  PubMed  CAS  Google Scholar 

  47. Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26:463–471

    Article  PubMed  CAS  Google Scholar 

  48. Ren JG, Xia HL, Just T et al (2001) Hydroxyl radical-induced apoptosis in human tumor cells is associated with telomere shortening but not telomerase inhibition and caspase activation. FEBS Lett 19:123–132

    Article  Google Scholar 

  49. Setsukinai K, Urano Y, Kakinuma K et al (2002) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278:3170–3175

    Article  PubMed  Google Scholar 

  50. Matsuo T, Cox C, Bennett JM (1989) Prognostic significance of myeloperoxidase positivity of blast cells in acute myeloblastic leukemia without maturation (FAB: M1): an ECOG study. Hematol Pathol 3:153–158

    PubMed  CAS  Google Scholar 

  51. Suic M, Boban D, Markovic-Glamocak M et al (1992) Prognostic significance of cytochemical analysis of leukemic M2 blasts. Med Oncol Tumor Pharmacother 9:41–45

    PubMed  CAS  Google Scholar 

  52. Matsuo T, Kuriyama K, Miyazaki Y et al (2003) The percentage of myeloperoxidase-positive blast cells is a strong independent prognostic factor in acute myeloid leukemia, even in the patients with normal karyotype. Leukemia 17:1538–1543

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Dr. Tomonori Nakazato and members of the Kizaki laboratory for their excellent experiments, helpful discussion, and assistance. This work was supported by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Conflict of interest statement

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Kizaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kizaki, M. Biological significance of myeloperoxidase (MPO) on green tea component, (−)-epigallocatechin-3-gallate (EGCG)-induced apoptosis: its therapeutic potential for myeloid leukemia. Targ Oncol 3, 45–50 (2008). https://doi.org/10.1007/s11523-007-0065-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-007-0065-2

Keywords

Navigation