Skip to main content

Advertisement

Log in

New multitargeted treatments with antiangiogenic and antitumor activity: focus on sunitinib

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Tumor growth and survival requires both proliferative and angiogenic signals, involving many molecular pathways. There is increasing preclinical and clinical evidence that agents targeting more than one pathway or receptor may be more efficacious in inducing tumor regression and disrupting tumor vasculature than those directed at a single target. This review considers several multitargeted agents recently approved or currently in clinical development for various solid tumors. These include sunitinib malate, an oral multitargeted receptor tyrosine kinase inhibitor conditionally approved in the EU in July 2006 for the treatment of patients with advanced renal cell carcinoma (RCC) after failure of cytokine-based therapy and patients with gastrointestinal stromal tumors (GIST) whose disease has progressed or who are unable to tolerate imatinib mesylate. Also reviewed are the multitargeted inhibitors sorafenib (also recently approved for the treatment of advanced RCC after failure of cytokine-based therapy); lapatinib (in clinical development for several solid tumors, with promising activity in advanced breast cancer); and dasatinib (preliminary indications of activity in GIST and other solid tumors). These agents have demonstrated activity against a range of tumor types and show promise in settings for which few (if any) alternative treatments are available. The present challenge is to optimize the way in which these drugs are used in the clinic. This will require further evaluation of dosing schedules, combination regimens (with chemotherapy and/or other targeted agents), and patient populations likely to derive greatest clinical benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  2. Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52:237–268

    PubMed  CAS  Google Scholar 

  3. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  PubMed  CAS  Google Scholar 

  4. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    Article  PubMed  CAS  Google Scholar 

  5. Thiele W, Sleeman JP (2006) Tumor-induced lymphangiogenesis: a target for cancer therapy? J Biotechnol 124:224–241

    Article  PubMed  CAS  Google Scholar 

  6. Saharinen P, Alitalo K (2003) Double target for tumor mass destruction. J Clin Invest 111:1277–1280

    Article  PubMed  CAS  Google Scholar 

  7. Wang D, Huang HJ, Kazlauskas A et al (1999) Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res 59:1464–1472

    PubMed  CAS  Google Scholar 

  8. Yu J, Ustach C, Kim HR (2003) Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol 36:49–59

    PubMed  CAS  Google Scholar 

  9. Bergers G, Brekken R, McMahon G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    Article  PubMed  CAS  Google Scholar 

  10. Bergers G, Song S, Meyer-Morse N et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295

    Article  PubMed  CAS  Google Scholar 

  11. Bergers G, Hanahan D (2002) Combining antiangiogenic agents with metronomic chemotherapy enhances efficacy against late-stage pancreatic islet carcinomas in mice. Cold Spring Harbor Symp Quant Biol 67:293–300

    Article  PubMed  CAS  Google Scholar 

  12. Erber R, Thurnher A, Katsen AD et al (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18:338–340

    PubMed  CAS  Google Scholar 

  13. Ezzat S, Huang P, Dackiw A et al (2005) Dual inhibition of RET and FGFR4 restrains medullary thyroid cancer cell growth. Clin Cancer Res 11:1336-1341

    PubMed  CAS  Google Scholar 

  14. Abrams TJ, Lee LB, Murray LJ et al (2003) SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther 2:471–478

    PubMed  CAS  Google Scholar 

  15. Abrams TJ, Murray LJ, Pesenti E et al (2003) Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with “standard of care” therapeutic agents for the treatment of breast cancer. Mol Cancer Ther 2:1011–1021

    PubMed  CAS  Google Scholar 

  16. O’Farrell AM, Abrams TJ, Yuen HA et al (2003) SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101:3597–3605

    Article  PubMed  CAS  Google Scholar 

  17. O’Farrell AM, Foran JM, Fiedler W et al (2003) An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res 9:5465–5476

    PubMed  CAS  Google Scholar 

  18. Mendel DB, Laird AD, Xin X et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327–337

    PubMed  CAS  Google Scholar 

  19. Schueneman AJ, Himmelfarb E, Geng L et al (2003) SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res 63:4009–4016

    PubMed  CAS  Google Scholar 

  20. Sun L, Liang C, Shirazian S et al (2003) Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J Med Chem 46:1116–1119

    Article  PubMed  CAS  Google Scholar 

  21. Murray LJ, Abrams TJ, Long KR et al (2003) SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis 20:757–766

    Article  PubMed  CAS  Google Scholar 

  22. Sakamoto JM (2004) SU-11248 SUGEN. Curr Opin Investig Drugs 5:1329–1339

    PubMed  CAS  Google Scholar 

  23. Faivre S, Delbaldo C, Vera K et al (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24:25–35

    Article  PubMed  CAS  Google Scholar 

  24. Demetri DG, George S, Heinrich MC et al (2003) Clinical activity and tolerability of the multi-targeted tyrosine kinase inhibitor SU11248 in patients with metastatic gastrointestinal stromal tumor refractory to imatinib mesylate. Proc Am Soc Clin Oncol 22:814 (Abstract 3273)

    Google Scholar 

  25. Rosen L, Mulay M, Long J et al (2003) Phase I trial of SU11248, a novel tyrosine kinase inhibitor in advanced solid tumors. Proc Am Soc Clin Oncol 22:191 (Abstract 765)

    Google Scholar 

  26. Pfizer Inc. data on file

  27. Ferlay J, Bray F, Pisani P et al (2004) GLOBOCAN 2002. Mortality and Prevalence Worldwide IARC CancerBase no. 5 version 2.0

  28. Drucker BJ (2005) Renal cell carcinoma: current status and future prospects. Cancer Treat Rev 31:536–545

    Article  PubMed  Google Scholar 

  29. Campbell SC, Flanigan RC, Clark JI (2003) Nephrectomy in metastatic renal cell carcinoma. Curr Treatm Opt Oncol 4:363–372

    Article  Google Scholar 

  30. Amato RJ (2000) Chemotherapy for renal cell carcinoma. Semin Oncol 27:177–186

    PubMed  CAS  Google Scholar 

  31. Fyfe G, Fisher RI, Rosenberg SA et al (1995) Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 13:688–696

    PubMed  CAS  Google Scholar 

  32. Medical Research Council Renal Cancer Collaborators (1999) Interferon-alpha and survival in metastatic renal carcinoma: early results of a randomized controlled trial. Lancet 353:14–17

    Article  Google Scholar 

  33. Negrier S, Escudier B, Lasset C et al (1998) Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. Groupe Francais d’Immunotherapie. N Engl J Med 338:1272–1278

    Article  PubMed  CAS  Google Scholar 

  34. Kaelin WG, Jr. (2004) The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res 10:6290S–6295S

    Article  PubMed  CAS  Google Scholar 

  35. Patard JJ, Rioux-Leclercq N, Fergelot P (2006) Understanding the importance of smart drugs in renal cell carcinoma. Eur Urol 49:633–643

    Article  PubMed  CAS  Google Scholar 

  36. Iliopoulos O, Kibel A, Gray S et al (1995) Tumour suppression by the human von Hippel-Lindau gene product. Nat Med 1:822–826

    Article  PubMed  CAS  Google Scholar 

  37. Motzer RJ, Michaelson MD, Redman BG et al (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24:16–24

    Article  PubMed  CAS  Google Scholar 

  38. Motzer RJ, Rini BI, Bukowski RM et al (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295:2516–2524

    Article  PubMed  CAS  Google Scholar 

  39. Motzer R, Rini BI, Michaelson MD et al (2005) Sunitinib malate (SU11248) shows antitumor activity in patients with metastatic renal cell carcinoma: updated results from phase II trials. Eur J Cancer 3:6 (Abstract 797)

    Google Scholar 

  40. Yang JC, Haworth L, Sherry RM et al (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349:427–434

    Article  PubMed  CAS  Google Scholar 

  41. Motzer RJ, Bacik J, Murphy BA et al (2002) Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol 20:289–296

    Article  PubMed  CAS  Google Scholar 

  42. Escudier B, Szczylik C, Eisen T et al (2005) Randomized phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC). (Oral presentation). Proc Am Soc Clin Oncol 23:380s (Abstract LBA4510)

    Google Scholar 

  43. Motzer RJ, Hutson TE, Tomczak P et al (2006) Phase III randomized trial of sunitinib malate (SU11248) versus interferon-alfa (IFN-a) as first-line systemic therapy for patients with metastatic renal cell carcinoma (mRCC). Proc Am Soc Clin Oncol 24:2s (Abstract LBA3)

    Google Scholar 

  44. Rini BI, George DJ, Michaelson MD et al (2006) Efficacy and safety of sunitinib malate (SU11248) in bevacizumab-refractory metastatic renal cell carcinoma (mRCC). Proc Am Soc Clin Oncol 24:222s (Abstract 4522)

    Google Scholar 

  45. Ronnen EA, Kondagunta GV, Lau C et al (2006) A phase I study of sunitinib malate (SU11248) in combination with gefitinib in patients with metastatic renal cell carcinoma (mRCC). Proc Am Soc Clin Oncol 24:225s (Abstract 4537)

    Google Scholar 

  46. DeMatteo RP, Lewis JJ, Leung D et al (2000) Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 231:51–58

    Article  PubMed  CAS  Google Scholar 

  47. Corless CL, Fletcher JA, Heinrich MC (2004) Biology of gastrointestinal stromal tumors. J Clin Oncol 22:3813–3825

    Article  PubMed  CAS  Google Scholar 

  48. Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480

    Article  PubMed  CAS  Google Scholar 

  49. Van Glabbeke M, Verweij J, Casali PG et al (2005) Initial and late resistance to imatinib in advanced gastrointestinal stromal tumors are predicted by different prognostic factors: a European Organizsation for Research and Treatment of Cancer-Italian Sarcoma Group-Australasian Gastrointestinal Trials Group study. J Clin Oncol 23:5795–5804

    Article  PubMed  CAS  Google Scholar 

  50. Verweij J, Casali PG, Zalcberg J et al (2004) Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomizsed trial. Lancet 364:1127–1134

    Article  PubMed  CAS  Google Scholar 

  51. Morgan JA, Demetri GD, Fletcher JA et al (2005) Patients with imatinib mesylate-resistant GIST exhibit durable responses to sunitinb malate (SU11248). Eur J Cancer Suppl 3:421 (Abstract 1456)

    Google Scholar 

  52. Heinrich MC, Maki RG, Corless CL (2006) Sunitinib (SU) response in imatinib-resistant (IM-R) GIST correlates with KIT and PDGFRA mutation status. Proc Am Soc Clin Oncol 24:520s (Abstract 9502)

    Google Scholar 

  53. Morgan JA, Demetri GD, Fletcher JA et al (2006) Durable responses to SU11248 (sunitinib malate) are observed across all genotypes of imatinib mesylate-resistant GIST. Presented at the 17th International Congress on Anti-Cancer Treatment, Paris, France, January 30–February 2, 2006 (Oral presentation)

  54. Heinrich MC, Maki RG, Corless CL et al (2006) Correlation of KIT and PDGFRA mutation status with sunitinib malate (SU11248) activity in imatinib-resistant GIST. Presented at AACR Molecular Diagnostics in Cancer Therapeutic Development, Chicago, USA, 12–15 September 2006 (Poster presentation)

  55. Demetri DG, van Oosterom A, Garrett CR et al (2006) Efficacy and safety of sunitinib malate in patients with advanced gastrointestinal stromal tumor following failure of imatinib mesylate due to resistance or intolerance. Lancet 368:1329–1338

    Article  PubMed  CAS  Google Scholar 

  56. Price DJ, Miralem T, Jiang S et al (2001) Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ 12:129–135

    PubMed  CAS  Google Scholar 

  57. Carvalho I, Milanezi F, Martins A et al (2005) Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res 7:R788–R795

    Article  PubMed  CAS  Google Scholar 

  58. Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    Article  PubMed  CAS  Google Scholar 

  59. Miller KD, Burstein HJ, Elias AD (2005) Safety and efficacy of sunitinib malate (SU11248) as second-line therapy in metastatic breast cancer (MBC) patients: preliminary results from a Phase II study. Eur J Cancer Suppl 3:113 (Abstract 406)

    Google Scholar 

  60. Bianchi G, Loibl S, Zamagni C et al (2005) A phase II, multicentre, uncontrolled trial of sorafenib (BAY 43-9006) in patients with metastatic breast cancer. Eur J Cancer Suppl 3:78 (Abstract 276)

    Google Scholar 

  61. Cobleigh MA, Langmuir VK, Sledge GW et al (2003) A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 30:117-124

    Article  PubMed  CAS  Google Scholar 

  62. Christofori G, Naik P, Hanahan D (1995) Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorigenesis. Mol Endocrinol 9:1760–1770

    Article  PubMed  CAS  Google Scholar 

  63. La Rosa S, Uccella S, Finzi G et al (2003) Localization of vascular endothelial growth factor and its receptors in digestive endocrine tumors: correlation with microvessel density and clinicopathologic features. Human Pathol 34:18–27

    Article  CAS  Google Scholar 

  64. Terris B, Scoazec JY, Rubbia L et al (1998) Expression of vascular endothelial growth factor in digestive neuroendocrine tumors. Histopathology 32:133–138

    Article  PubMed  CAS  Google Scholar 

  65. Chaudhry A, Papanicolaou V, Oberg K et al (1992) Expression of platelet-derived growth factor and its receptors in neuroendocrine tumors of the digestive system. Cancer Res 52:1006–1012

    PubMed  CAS  Google Scholar 

  66. Chaudhry A, Funa K, Oberg K (1993) Expression of growth factor peptides and their receptors in neuroendocrine tumors of the digestive system. Acta Oncol 32:107–114

    PubMed  CAS  Google Scholar 

  67. Ichihara M, Murakumo Y, Takahashi M (2004) RET and neuroendocrine tumors. Cancer Lett 204:197–211

    Article  PubMed  CAS  Google Scholar 

  68. Kouvaraki MA, Shapiro SE, Perrier ND et al (2005) RET proto-oncogene: a review and update of genotype–phenotype correlations in hereditary medullary thyroid cancer and associated endocrine tumors. Thyroid 15:531–544

    Article  PubMed  CAS  Google Scholar 

  69. Kulke M, Lenz H, Meropol N et al (2005) Results of a phase II study with sunitinib malate (SU11248) in patients (pts) with advanced neuroendocrine tumours (NETS). Eur J Cancer Suppl 3:204 (Abstract 718)

    Google Scholar 

  70. Ansell SM, Pitot HC, Burch PA et al (2001) A Phase II study of high-dose paclitaxel in patients with advanced neuroendocrine tumors. Cancer 91:1543–1548

    Article  PubMed  CAS  Google Scholar 

  71. Kulke MH, Kim H, Stuart K et al (2004) A phase II study of docetaxel in patients with metastatic carcinoid tumors. Cancer Investig 22:353–359

    Article  CAS  Google Scholar 

  72. Oberg K, Kvols L, Caplin M et al (2004) Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol 15:966–973

    Article  PubMed  CAS  Google Scholar 

  73. Ricci S, Antonuzzo A, Galli L et al (2000) Long-acting depot lanreotide in the treatment of patients with advanced neuroendocrine tumors. Am J Clin Oncol 23:412–415

    Article  PubMed  CAS  Google Scholar 

  74. Bajetta E, Zilembo N, Di Bartolomeo M et al (1993) Treatment of metastatic carcinoids and other neuroendocrine tumors with recombinant interferon-alpha-2a. A study by the Italian Trials in Medical Oncology Group. Cancer 72:3099–3105

    Article  PubMed  CAS  Google Scholar 

  75. Demetri GD, van Oosterom A, Garrett C et al (2005) Sunitinib malate (SU11248) prolongs progression-free and overall survival for GIST patients after failure of imatinib mesylate therapy: update of a phase III trial. Eur J Cancer 3:4 (Abstract 716)

    Google Scholar 

  76. SUTENT (sunitinib malate) prescribing information. New York, NY: Pfizer Inc., February 2006. Available at http://www.pfizer.com. (2006)

  77. Bello C, DePrimo SE, Friece C (2006) Analysis of circulating biomarkers of sunitinib malate in patients with unresectable neuroendocrine tumors (NET): VEGF, IL-8, and soluble VEGF receptors 2 and 3. Proc Am Soc Clin Oncol 24:189s (Abstract 4045)

    Google Scholar 

  78. DePrimo SE, Friece C, Huang X (2006) Effect of treatment with sunitinib malate, a multitargeted tyrosine kinase inhibitor, on circulating plasma levels of VEGF, soluble VEGF receptors 2 and 3, and soluble KIT in patients with metastatic breast cancer. Proc Am Soc Clin Oncol 24:22s (Abstract 578)

    Google Scholar 

  79. DePrimo S, Bello C, Smeraglia J (2005) The multitargeted kinase inhibitor sunitinib malate (SU11248): soluble protein biomarkers of pharmacodynamic activity in patients with metastatic renal cell cancer. Eur J Cancer Suppl 3:420 (Abstract 1452)

    Google Scholar 

  80. Norden-Zfoni A, Manola J, Desai J (2005) Circulating endothelial cells and monocytes as markers of sunitinib malate (SU11248) activity in patients with imatinib mesylate-resistant GIST. Eur J Cancer Suppl 3:423 (Abstract 1461)

    Google Scholar 

  81. Davis DW, Heymach JV, McConkey DJ (2005) Receptor tyrosine kinase activity and apoptosis in gastrointestinal stromal tumours: a pharmacodynamic analysis of response to sunitinib malate (SU11248) therapy. Eur J Cancer Suppl 3:203 (Abstract 715)

    Google Scholar 

  82. Van den Abbeele AD, Melenevsky Y, de Vries D (2005) FDG-PET imaging demonstrates kinase target inhibition by sunitinib malate (SU11248) in GIST patients resistant to or intolerant of imatinib mesylate. Eur J Cancer Suppl 3:202 (Abstract 714)

    Google Scholar 

  83. Beeram M, Patnaik A, Rowinsky EK (2005) Raf: a strategic target for therapeutic development against cancer. J Clin Oncol 23:6771–6790

    Article  PubMed  CAS  Google Scholar 

  84. Wilhelm S, Chien DS (2002) BAY 43-9006: preclinical data. Curr Pharm Des 8:2255–2257

    Article  PubMed  CAS  Google Scholar 

  85. Ratain MJ, Flaherty KT, Stadler WM (2004) Preliminary antitumor activity of BAY 43-9006 in metastatic renal cell carcinoma and other advanced refractory solid tumors in a phase II randomized discontinuation trial (RDT). J Clin Oncol 22 (July 15 Suppl):14S (Abstract 4501)

    Google Scholar 

  86. Ratain MJ, Eisen T, Stadler WM et al (2006) Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 24:2505–2512

    Article  PubMed  CAS  Google Scholar 

  87. Eisen T, Bukowski RM, Staehler M et al (2006) Randomized phase III trial of sorafenib in advanced renal cell carcinoma (RCC): impact of crossover on survival. Proc Am Soc Clin Oncol 24:223s (Abstract 4524)

    Google Scholar 

  88. Escudier B, Szczylik C, Demkow T et al (2006) Randomized phase II trial of the multi-kinase inhibitor sorafenib versus interferon (IFN) in treatment-naïve patients with metastatic renal cell carcinoma (mRCC). Proc Am Soc Clin Oncol 24:217s (Abstract 4501)

    Google Scholar 

  89. Ryan CW, Goldman BH, Lara PN Jr et al (2006) Sorafenib plus interferon-a2b (IFN) as first-line therapy for advanced renal cell carcinoma (RCC): SWOG 0412. Proc Am Soc Clin Oncol 24:223s (Abstract 4525)

    Google Scholar 

  90. Gollob J, Richmond T, Jones J et al (2006) Phase II trial of sorafenib plus interferon-alpha 2b (IFN-a2b) as first- or second-line therapy in patients (pts) with metastatic renal cell cancer (RCC). Proc Am Soc Clin Oncol 24:226s (Abstract 4538)

    Google Scholar 

  91. Sosman JA, Flaherty K, Atkins MB (2006) A phase I/II trial of sorafenib (S) with bevacizumab (B) in metastatic renal cell cancer (mRCC) patients (Pts). Proc Am Soc Clin Oncol 24:128s (Abstract 3031)

    Google Scholar 

  92. Gatzemeier U, Blumenschein G, Fosella F (2006) Phase II trial of single-agent sorafenib in patients with advanced non-small cell lung carcinoma. Proc Am Soc Clin Oncol 24:364s (Abstract 7002)

    Google Scholar 

  93. Liu B, Barrett T, Choyke P (2006) A phase II study of BAY 43-9006 (Sorafenib) in patients with relapsed non-small cell lung cancer (NSCLC). Proc Am Soc Clin Oncol 24:676s (Abstract 17119; publication only)

    Google Scholar 

  94. Steinbild S, Mross K, Morant D (2006) Phase II study of Sorafenib (BAY 43-9006) in hormone-refractory patients with prostate cancer: A study of the Central European Society for Anticancer Drug Research-EWIV (CESAR). Proc Am Soc Clin Oncol 24:144s (Abstract 3094)

    Google Scholar 

  95. Amaravadi RK, Schuchter LM, Kramer A (2006) Preliminary results of a randomized phase II study comparing two schedules of temozolomide in combination with sorafenib in patients with advanced melanoma. Proc Am Soc Clin Oncol 24:455s (Abstract 8009)

    Google Scholar 

  96. Schiller JH, Flaherty KT, Redlinger M (2006) Sorafenib combined with carboplatin/paclitaxel for advanced non-small cell lung cancer: a phase I subset analysis. Proc Am Soc Clin Oncol 24:412s (Abstract 7194)

    Google Scholar 

  97. Welch S, Hirte H, Schilder RJ (2006) Phase II study of sorafenib (BAY 43-9006) in combination with gemcitabine in recurrent epithelial ovarian cancer: a PMH phase II consortium trial. Proc Am Soc Clin Oncol 24:276s (Abstract 5084)

    Google Scholar 

  98. NEXAVAR (sorafenib) prescribing information. West Haven, CT: Bayer Pharmaceutical Corporation. (2005)

  99. Rusnak DW, Lackey K, Affleck K et al (2001) The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1:85–94

    PubMed  CAS  Google Scholar 

  100. Blackwell KL, Kaplan EH, Franco SX (2004) A phase II, open-label, multicenter study of GW572016 in patients with trastuzumab-refractory metastatic breast cancer. Proc Am Soc Clin Oncol 22:14s (Abstract 3006)

    Google Scholar 

  101. Gomez HL, Chavez MA, Doval DC (2005) A phase II, randomized trial using the small molecule tyrosine kinase inhibitor lapatinib as a first-line treatment in patients with FISH positive advanced or metastatic breast cancer. Proc Am Soc Clin Oncol 23:203s (Abstract 3046)

    Google Scholar 

  102. Konecny GE, Pegram MD, Venkatesan N et al (2006) Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66:1630–1639

    Article  PubMed  CAS  Google Scholar 

  103. Chu I, Blackwell K, Chen S et al (2005) The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res 65:18–25

    PubMed  CAS  Google Scholar 

  104. Geyer CE, Forster JK, Cameron et al (2006) Scientific Special Session: Lapatinib in Trastuzumab-Resistant Breast Cancer. ASCO Annual Meeting 2006

  105. Lin NU, Carey LA, Liu MC et al (2006) Phase II trial of lapatinib for brain metastases in patients with HER2+ breast cancer. J Clin Oncol 24:3s (Abstract 503)

    Article  CAS  Google Scholar 

  106. Spector NL, Blackwell K, Hurley J (2006) EGF103009, a phase II trial of lapatinib monotherapy in patients with relapsed/refractory inflammatory breast cancer (IBC): clinical activity and biologic predictors of response. Proc Am Soc Clin Oncol 24:3s (Abstract 502)

    Google Scholar 

  107. Ravaud A, Gardner J, Hawkins R et al (2006) Efficacy of lapatinib in patients with high tumor EGFR expression: results of a phase III trial in advanced renal cell carcinoma (RCC). Proc Am Soc Clin Oncol 24:217s (Abstract 4502)

    Google Scholar 

  108. Burris HA 3rd, Hurwitz HI, Dees EC et al (2005) Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 23:5305–5313

    Article  PubMed  CAS  Google Scholar 

  109. Fields AL, Rinaldi DA, Henderson CA (2005) An open-label multicenter phase II study of oral lapatinib (GW572016) as single agent, second-line therapy in patients with metastatic colorectal cancer. Proc Am Soc Clin Oncol 23:266s (Abstract 3583)

    Google Scholar 

  110. Ross HJ, Blumenschein GR, Dowlati A et al (2005) Preliminary safety results of a phase II trial comparing two schedules of lapatinib (GW572016) as first line therapy for advanced or metastatic non-small cell lung cancer. Proc Am Soc Clin Oncol 23:645s (Abstract 7099)

    Google Scholar 

  111. Perez EA, Byrne JA, Hammond Iw et al (2006) Results of an analysis of cardiac function in 2,812 patients treated with lapatinib. J Clin Oncol 24:23s (Abstract 583)

    Article  Google Scholar 

  112. Dasatinib: BMS 354825. (2006) Drugs R D 7:129–132

    Google Scholar 

  113. Johnson FM, Saigal B, Talpaz M et al (2005) Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells. Clin Cancer Res 11:6924–6932

    Article  PubMed  CAS  Google Scholar 

  114. Nam S, Kim D, Cheng JQ et al (2005) Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res 65:9185–9189

    Article  PubMed  CAS  Google Scholar 

  115. Evans TR, Morgan JA, van den Abbeele AD (2005) Phase I dose-escalation study of the SRC and multi-kinase inhibitor BMS-354825 in patients (pts) with GIST and other solid tumors. Proc Am Soc Clin Oncol 23:200s (Abstract 3034)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dalgleish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalgleish, A., Copier, J. New multitargeted treatments with antiangiogenic and antitumor activity: focus on sunitinib. Targ Oncol 2, 17–29 (2007). https://doi.org/10.1007/s11523-006-0040-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-006-0040-3

Keywords

Navigation