Skip to main content
Log in

Lymph node metastasis as a new target for cancer treatment

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

The presence of lymph node metastasis is predictive of poor prognosis in solid tumors. Demonstration of specific markers of lymphatic endothelial cells has facilitated the study of the molecular mechanisms of metastasis, particularly lymphangiogenesis. The vascular endothelial growth factor (VEGF)-C/VEGF-D/VEGF receptor (VEGFR)-3 axis has been the most extensively studied, but other molecular pathways are also involved, such as fibroblast growth factor (FGF)-2, platelet-derived growth factor (PDGF)-BB, angiopoietin-1, VEGF-A, hepatocyte growth factor (HGF), insulin-like growth factor (IGF)-1 and -1R, and cyclooxygenase-2. Several strategies are currently being developed to prevent lymphatic metastasis, mainly targeting the VEGF-C/VEGF-D/VEGFR-3 axis: inhibiting maturation and activation of VEGF-C and VEGF-D by successive proteolyses, inhibiting binding of ligands to their receptor, and using tyrosine kinase inhibitors. Many questions remain and will be discussed in this article, particularly the role of lymph node metastasis in the development of visceral metastases, possible toxicities of antilymphangiogenic treatments, and their possible interactions with intratumoral penetration of other anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher B, Fisher ER (1966) The interrelationship of hematogenous and lymphatic tumor cell dissemination. Surg Gynecol Obstet 122:791–798

    PubMed  CAS  Google Scholar 

  2. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  3. Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3:24–40

    Article  PubMed  CAS  Google Scholar 

  4. Hayes DF (2005) Prognostic and predictive factors revisited. Breast 14:493–499

    Article  PubMed  Google Scholar 

  5. Pepper MS (2001) Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 7:462–468

    PubMed  CAS  Google Scholar 

  6. Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K (2002) Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2:573–583

    Article  PubMed  CAS  Google Scholar 

  7. Swartz MA, Skobe M (2001) Lymphatic function, lymphangiogenesis, and cancer metastasis. Microsc Res Tech 55:92–99

    Article  PubMed  CAS  Google Scholar 

  8. Jussila L, Alitalo K (2002) Vascular growth factors and lymphangiogenesis. Physiol Rev 82:673–700

    PubMed  CAS  Google Scholar 

  9. Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438:946–953

    Article  PubMed  CAS  Google Scholar 

  10. Pepper MS (2000) Lymphangiogenesis and tumor metastasis: more questions than answers. Lymphology 33:144–147

    PubMed  CAS  Google Scholar 

  11. Sleeman JP, Krishnan J, Kirkin V, Baumann P (2001) Markers for the lymphatic endothelium: in search of the holy grail? Microsc Res Tech 55:61–69

    Article  PubMed  CAS  Google Scholar 

  12. Maula SM, Luukkaa M, Grenman R, Jackson D, Jalkanen S, Ristamaki R (2003) Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinomas of the head and neck region. Cancer Res 63:1920–1926

    PubMed  CAS  Google Scholar 

  13. Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A, Jackson DG, Ellwanger U, Garbe C, Mihm MC, Detmar M (2003) Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 162:1951–1960

    PubMed  Google Scholar 

  14. Hall FT, Freeman JL, Asa SL, Jackson DG, Beasley NJ (2003) Intratumoral lymphatics and lymph node metastases in papillary thyroid carcinoma. Arch Otolaryngol Head Neck Surg 129:716–719

    Article  PubMed  Google Scholar 

  15. Kyzas PA, Geleff S, Batistatou A, Agnantis NJ, Stefanou D (2005) Evidence for lymphangiogenesis and its prognostic implications in head and neck squamous cell carcinoma. J Pathol 206:170–177

    Article  PubMed  Google Scholar 

  16. Thiele W, Sleeman JP (2006) Tumor-induced lymphangiogenesis: a target for cancer therapy? J Biotechnol 124:224–241

    Article  PubMed  CAS  Google Scholar 

  17. Achen MG, Stacker SA (2006) Tumor lymphangiogenesis and metastatic spread-New players begin to emerge. Int J Cancer 119(8):1755–1760

    Article  PubMed  CAS  Google Scholar 

  18. Taipale J, Makinen T, Arighi E, Kukk E, Karkkainen M, Alitalo K (1999) Vascular endothelial growth factor-3. Curr Top Microbiol Immunol 237:85–96

    PubMed  CAS  Google Scholar 

  19. Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y, Saksela O, Kalkkinen N, Alitalo K (1997) Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J 16:3898–3911

    Article  PubMed  CAS  Google Scholar 

  20. Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95:548–553

    Article  PubMed  CAS  Google Scholar 

  21. Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV, Kubo H, Thurston G, McDonald DM, Achen MG, Stacker SA, Alitalo K (2001) Signaling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 20:1223–1231

    Article  PubMed  CAS  Google Scholar 

  22. Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K, Wilting J (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188:96–109

    Article  PubMed  CAS  Google Scholar 

  23. Makinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ, Kauppinen R, Jackson DG, Kubo H, Nishikawa S, Yla-Herttuala S, Alitalo K (2001) Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 7:199–205

    Article  PubMed  CAS  Google Scholar 

  24. Bradley K, Loughran SJ, Davydova N, Stacker SA, Achen MG (2005) Mechanisms of lymphangiogenesis: targets for blocking the metastatic spread of cancer. Curr Cancer Drug Targets 5:561–571

    Article  Google Scholar 

  25. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7:192–198

    Article  PubMed  CAS  Google Scholar 

  26. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20:672–682

    Article  PubMed  CAS  Google Scholar 

  27. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7:186–191

    Article  PubMed  CAS  Google Scholar 

  28. Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla-Herttuala S, Jaattela M, Alitalo K (2001) Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61:1786–1790

    PubMed  CAS  Google Scholar 

  29. Skobe M, Hamberg LM, Hawighorst T, Schirner M, Wolf GL, Alitalo K, Detmar M (2001) Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol 159:893–903

    PubMed  CAS  Google Scholar 

  30. Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, Munn LL, Jain RK (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296:1883–1886

    Article  PubMed  CAS  Google Scholar 

  31. Arinaga M, Noguchi T, Takeno S, Chujo M, Miura T, Uchida Y (2003) Clinical significance of vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 in patients with non-small cell lung carcinoma. Cancer 97:457–464

    Article  PubMed  CAS  Google Scholar 

  32. Ogawa E, Takenaka K, Yanagihara K, Kurozumi M, Manabe T, Wada H, Tanaka F (2004) Clinical significance of VEGF-C status in tumor cells and stromal macrophages in non-small cell lung cancer patients. Br J Cancer 91:498–503

    Article  PubMed  CAS  Google Scholar 

  33. Kojima H, Shijubo N, Yamada G, Ichimiya S, Abe S, Satoh M, Sato N (2005) Clinical significance of vascular endothelial growth factor-C and vascular endothelial growth factor receptor 3 in patients with T1 lung adenocarcinoma. Cancer 104:1668–1677

    Article  PubMed  CAS  Google Scholar 

  34. Li Q, Dong X, Gu W, Qiu X, Wang E (2003) Clinical significance of co-expression of VEGF-C and VEGFR-3 in non-small cell lung cancer. Chin Med J (Engl.) 116:727–730

    CAS  Google Scholar 

  35. Saintigny P, Kambouchner M, Gomes N, Sainte-Catherine O, Vassy R, Breau JL, Morère JF, Bernaudin JF, Kraemer M (2006) VEGFR-3 and VEGF-C coexpression in non-small-cell lung carcinomatous cells is associated with cell proliferation and lymph node metastasis. (submitted for publication)

  36. Achen MG, Williams RA, Baldwin ME, Lai P, Roufail S, Alitalo K, Stacker SA (2002) The angiogenic and lymphangiogenic factor vascular endothelial growth factor-D exhibits a paracrine mode of action in cancer. Growth Factors 20:99–107

    Article  PubMed  CAS  Google Scholar 

  37. Kubo H, Cao R, Brakenhielm E, Makinen T, Cao Y, Alitalo K (2002) Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 99:8868–8873

    Article  PubMed  CAS  Google Scholar 

  38. Chang LK, Garcia-Cardena G, Farnebo F, Fannon M, Chen EJ, Butterfield C, Moses MA, Mulligan RC, Folkman J, Kaipainen A (2004) Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA 101:11658–11663

    Article  PubMed  CAS  Google Scholar 

  39. Cao R, Bjorndahl MA, Religa P, Clasper S, Garvin S, Galter D, Meister B, Ikomi F, Tritsaris K, Dissing S, Ohhashi T, Jackson DG, Cao Y (2004) PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6:333–345

    Article  PubMed  CAS  Google Scholar 

  40. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D, Suri C, Campochiaro PA, Wiegand SJ, Yancopoulos GD (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3:411–423

    Article  PubMed  CAS  Google Scholar 

  41. Lohela M, Morisada T, Tornberg J, Norrmen C, Oike Y, Pajusola K, Thurston G, Suda T, Yla-Herttuala S, Alitalo K (2005) Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 105:4642–4648

    Article  PubMed  CAS  Google Scholar 

  42. Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ, Lawitts JA, Benjamin L, Tan X, Manseau EJ, Dvorak AM, Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 196:1497–1506

    Article  PubMed  CAS  Google Scholar 

  43. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040–1050

    Article  PubMed  CAS  Google Scholar 

  44. Hong YK, Lange-Asschenfeldt B, Velasco P, Hirakawa S, Kunstfeld R, Brown LF, Bohlen P, Senger DR, Detmar M (2004) VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J 18:1111–1113

    PubMed  CAS  Google Scholar 

  45. Bjorndahl MA, Cao R, Burton JB, Brakenhielm E, Religa P, Galter D, Wu L, Cao Y (2005) Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res 65:9261–9268

    Article  PubMed  Google Scholar 

  46. Ishigami SI, Arii S, Furutani M, Niwano M, Harada T, Mizumoto M, Mori A, Onodera H, Imamura M (1998) Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br J Cancer 78:1379–1384

    PubMed  CAS  Google Scholar 

  47. Shih CH, Ozawa S, Ando N, Ueda M, Kitajima M (2000) Vascular endothelial growth factor expression predicts outcome and lymph node metastasis in squamous cell carcinoma of the esophagus. Clin Cancer Res 6:1161–1168

    PubMed  CAS  Google Scholar 

  48. O-charoenrat P, Rhys-Evans P, Eccles SA (2001) Expression of vascular endothelial growth factor family members in head and neck squamous cell carcinoma correlates with lymph node metastasis. Cancer 92:556–568

    Article  PubMed  CAS  Google Scholar 

  49. Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M (2005) Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 24(16):2885–2895

    Article  PubMed  CAS  Google Scholar 

  50. Bjorndahl M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y, Zhou Z, Jackson D, Hansen AJ, Cao Y (2005) Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci USA 102:15593–15598

    Article  PubMed  CAS  Google Scholar 

  51. Tang Y, Zhang D, Fallavollita L, Brodt P (2003) Vascular endothelial growth factor C expression and lymph node metastasis are regulated by the type I insulin-like growth factor receptor. Cancer Res 63:1166–1171

    PubMed  CAS  Google Scholar 

  52. Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM (2004) Cyclooxygenases in cancer: progress and perspective. Cancer Lett 215:1–20

    Article  PubMed  CAS  Google Scholar 

  53. Su JL, Shih JY, Yen ML, Jeng YM, Chang CC, Hsieh CY, Wei LH, Yang PC, Kuo ML (2004) Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res 64:554–564

    Article  PubMed  CAS  Google Scholar 

  54. Timoshenko AV, Chakraborty C, Wagner GF, Lala PK (2006) COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer 94:1154–1163

    Article  PubMed  CAS  Google Scholar 

  55. Zhang J, Ji J, Yuan F, Zhu L, Yan C, Yu YY, Liu BY, Zhu ZG, Lin YZ (2005) Cyclooxygenase-2 expression is associated with VEGF-C and lymph node metastases in gastric cancer patients. Biomed Pharmacother 59(Suppl 2):S285–S288

    Article  PubMed  CAS  Google Scholar 

  56. Soumaoro LT, Uetake H, Takagi Y, Iida S, Higuchi T, Yasuno M, Enomoto M, Sugihara K (2006) Coexpression of VEGF-C and Cox-2 in human colorectal cancer and its association with lymph node metastasis. Dis Colon Rectum 49:392–398

    Article  PubMed  Google Scholar 

  57. von Rahden BH, Stein HJ, Puhringer F, Koch I, Langer R, Piontek G, Siewert JR, Hofler H, Sarbia M (2005) Coexpression of cyclooxygenases (COX-1, COX-2) and vascular endothelial growth factors (VEGF-A, VEGF-C) in esophageal adenocarcinoma. Cancer Res 65:5038–5044

    Article  Google Scholar 

  58. Kyzas PA, Stefanou D, Agnantis NJ (2005) COX-2 expression correlates with VEGF-C and lymph node metastases in patients with head and neck squamous cell carcinoma. Mod Path 18:153–160

    Article  CAS  Google Scholar 

  59. Alitalo K, Mohla S, Ruoslahti E (2004) Lymphangiogenesis and cancer: meeting report. Cancer Res 64:9225–9229

    Article  PubMed  CAS  Google Scholar 

  60. Balkwill F (2004) Cancer and the chemokines network. Nat Rev Cancer 4:540–550

    Article  PubMed  CAS  Google Scholar 

  61. Muller A, Homey B, Soto H et al (2001) Involvement of chemokines receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  62. Wiley HE, Gonzalez EB, Maki S et al (2001) Expression of CC chemokines receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93:1638–1643

    Article  PubMed  CAS  Google Scholar 

  63. Takanami I (2003) Overexpression of CCR7 mRNA in non-small-cell lung carcinoma: correlation with lymph node metastasis. Int J Cancer 105:186–189

    Article  PubMed  CAS  Google Scholar 

  64. Hirata T, Fukuse T, Naiki H et al (2001) Expression of E-cadherin and lymph node metastasis in resected non-small-cell lung carcinoma. Clin Lung Cancer 3:134–140

    Article  PubMed  CAS  Google Scholar 

  65. Choi YS, Shim YM, Kim SH et al (2003) Prognostic significance of E-cadherin and beta-catenin in resected stage I non-small-cell lung cancer. Eur J Cardio-thorac Surg 24:441–449

    Article  CAS  Google Scholar 

  66. Hommura F, Furuuchi K, Yamazaki K et al (2002) Increased expression of beta-catenin predicts better prognosis in non-small-cell lung carcinomas. Cancer 94:752–758

    Article  PubMed  CAS  Google Scholar 

  67. Orlandini M, Semboloni S, Oliviero S (2003) Beta-catenin inversely regulates vascular endothelial growth factor-D mRNA stability. J Biol Chem 278:44650–44656

    Article  PubMed  CAS  Google Scholar 

  68. Stacker SA, Hughes RA, Achen MG (2004) Molecular targeting of lymphatics for therapy. Curr Pharm Des 10:65–74

    Article  PubMed  CAS  Google Scholar 

  69. Cao Y (2005) Emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer 5:735–743

    Article  PubMed  CAS  Google Scholar 

  70. Van Trappen PO, Steele D, Lowe DG, Baithun S, Beasley N, Thiele W, Weich H, Krishnan J, Shepherd JH, Pepper MS, Jackson DG, Sleeman JP, Jacobs IJ (2003) Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGFR-3, during different stages of cervical carcinogenesis. J Pathol 201:544–554

    Article  PubMed  CAS  Google Scholar 

  71. Heldin CH, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Saintigny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saintigny, P., Morère, JF., Breau, JL. et al. Lymph node metastasis as a new target for cancer treatment. Targ Oncol 2, 49–57 (2007). https://doi.org/10.1007/s11523-006-0037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-006-0037-y

Keywords

Navigation