Advertisement

Determining hydrocarbon prospective zone using the combination of qualitative analysis and fuzzy logic method

  • Hidayah Nurul Hasanah Zen
  • Laila Wahyu Trimartanti
  • Zaenal Abidin
  • Agus Maman Abadi
Article
  • 49 Downloads

Abstract

Hydrocarbon prospective zone is a certain layer in a reservoir which is estimated producing oil. The geologists use the qualitative analysis method to find the prospect layers. The research used five variables modeled by three fuzzy membership functions and eight rules of fuzzy logic. The rules cause insensitiveness in the working system. This study therefore was conducted by modeling each of input variables into different models using 36 rules. It aims to determine the existence of hydrocarbon prospective zone through a qualitative analysis in a reservoir using fuzzy inference system with Mamdani method. The data were taken from well log data in reservoir “X”. There were some steps in doing this study, including fuzzification, inference system, and defuzzification. The result showed 99 prospect layers from 3000 layers in reservoir “X” with 97.7% of accuracy.

Keywords

Well log fuzzy logic prospective zone hydrocarbon qualitative analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Akhter, G.A.F. (2012). Determining the depositional pattern by resistivity-seismic inversion for the aquifer system of maria area, Pakistan. Environ Monit Assess, 184: 161–170.CrossRefGoogle Scholar
  2. [2]
    Akinyokun, O.C. & Enikanselu, P.A. (2009). Well log interpretation model for the determination of lithology and fluid contents. Spring-Pacific Journal of Science and Technology, 10 (1): 507–517.Google Scholar
  3. [3]
    Amigun, J. O. & Olisa, B. (2012). Petrophysical analysis of well logs for reservoir evaluation: a case study of ‘Laja’ oil field, Niger Delta. Journal of Petroleum and Gas Exploration Research, 2 (10): 181–187.Google Scholar
  4. [4]
    Budiman. (2013). Geometri facies sand layer ‘BI-24’ berdasarkan analisa well log pada lapangan ‘X’ PT. Pertamina EP. Geosains, 9 (2): 99–105.Google Scholar
  5. [5]
    Erviantari, D. & Sarkowi, M. (2014). Studi identifikasi struktur bawah permukaan dan keberadaan hidrokarbon berdasarkan data anomali gaya berat pada daerah cekungan Kalimantan Tengah. Jurnal Geofisika Eksplorasi, 2 (1): 13–20.Google Scholar
  6. [6]
    Ghallab, S.A. & Badr, N. (2013). A fuzzy expert system for petroleum prediction. WSEAS, 2: 77–82.Google Scholar
  7. [7]
    Ghazi, S. & Ahmad, S.R. (2012). Well log study and petrophysical properties of the Early Permian Warchha sandstone, Potwar Basin, Pakistan. Pakistan Journal of Science, 64 (3): 173–179.Google Scholar
  8. [8]
    Islam, A.R.M.T. & Habib, M.A. (2013). Interpretation of wireline log data for reservoir characterization of the Rashipdur gas field, Bengal Basin, Bangladesh. IOSR Journal of Applied Geology and Geophysics, 1 (4): 47–54.CrossRefGoogle Scholar
  9. [9]
    Kartika, F. & Mulyanto, B.S. (2013). Karakterisasi reservoar ‘Febri-Unila field’ menggunakan metode acoustic impedance (AI) inversion. Jurnal Geofisika Eksplorasi, 1 (1): 48–56.Google Scholar
  10. [10]
    Klir, G.J., Clair, U.St. & Yuan, B. (1997). Fuzzy Set Theory: Foundations and Applications. Prentice-Hall, Inc., United State of America.Google Scholar
  11. [11]
    Kristanto, D. & Aji, V.D.C. (eds.) (2012). Buku Panduan Praktikum Penilaian Formasi. Laboratorium Penilaian Formasi, Yogyakarta.Google Scholar
  12. [12]
    Kurniawan, A. & Mulyanto, B.S. (2013). Karakterisasi reservoar formasi Belumai dengan menggunakan metode inversi impendansi akustik dan neural network pada lapangan ‘YPS’. Jurnal Geofisika Eksplorasi, 1 (1): 15–24.Google Scholar
  13. [13]
    Kusumadewi, S. (2002). Analisis dan Desain Sistem Fuzzy Menggunakan Toolbox Matlab. Graha Ilmu, Yogyakarta.Google Scholar
  14. [14]
    Kusumadewi, S. & Purnomo, H. (2013). Aplikasi Logika Fuzzy Untuk Pendukung Keputusan. Graha Ilmu, Yogyakarta.Google Scholar
  15. [15]
    May, D.H. & Jacobsen, S. (2006). Identifying and correcting for high-resistivity cement effects for cased-hole resistivity-log analysis. SPE, 100340: 1–11.Google Scholar
  16. [16]
    Muchlison, M. & Melfi. (2013). Prospektivitas Suatu Lapisan Formasi dengan Menggunakan Kombinasi Log dan Tes Sumur pada Sumur “X” Lapangan “Y”. UPN "Veteran", Yogyakarta.Google Scholar
  17. [17]
    Munir, R. (2011). Sistem Inferensi Fuzzy. Informatika STEI ITB, Bandung.Google Scholar
  18. [18]
    Naba, A. (2009). Belajar Cepat Fuzzy Logic Menggunkan Matlab. ANDI, Yogyakarta.Google Scholar
  19. [19]
    Omoboriowo, A.O. & Chiadikobi, K.C. (2012). Depositional environment and petrophysical characteristics of ‘LEPA’ reservoir, Amma field, Eastern Niger Delta, Nigeria. International Journal of Pure and Applied Sciences and Technology, 10 (2): 38–61.Google Scholar
  20. [20]
    Omolaiye, G.E. & Sanuade, O.A. (2013). Petrophysics of the B-reservoir in Eyram field, Onshore Niger Delta. British Journal of Applied Science & Technology, 3 (4): 1481–1504.CrossRefGoogle Scholar
  21. [21]
    Omosanya, K.O. & Akinmosin, A.A. (2011). The hydrocarbon potential of the Nigerian Chad basin from wireline logs. Indian Journal of Science and Technology, 4 (12): 1668–1675.Google Scholar
  22. [22]
    Onuh, H.M. & Arinkoola, O.A. (2015). Genetic unit averages of pseudo-normalized pore throat radius for improved permeability predictions (Niger Delta as case study). Springer-J Petrol Explor Prod Technol, 5: 147–155.CrossRefGoogle Scholar
  23. [23]
    Pratama, A. & Suharno. (2013). Analisis petrofisika untuk menentukan potensi hidrokarbon pada sumur ELP-23 lapangan Prabumulih menggunakan metode inversi. Jurnal Geofisika Eksplorasi, 1 (1): 2–14.Google Scholar
  24. [24]
    Purnamasari, I.A. & Khairy, H. (2014). Rock physics modeling and fluid substitution studies in sandstone reservoir. Journal of Applied Sciences, 14 (11): 1180–1185.CrossRefGoogle Scholar
  25. [25]
    Shokouhi, S.V. & Aamodt, A. (2010). Applications of CBR in oil well drilling: a general overview. IFIP AICT 340, IIP: 102–111.Google Scholar
  26. [26]
    Simanjuntak, A.S. & Mulyanto, B.S. (2014). Karakterisasi reservoar hidrokarbon pada lapangan ‘TAB’ dengan menggunakan pemodelan inversi impedansi akustik. Jurnal Geofisika Eksplorasi, 2 (1): 2–13.Google Scholar
  27. [27]
    Wang, L. (1997). A Course in Fuzzy Systems and Control. Prentice-Hall, Inc., United State of America.zbMATHGoogle Scholar
  28. [28]
    Yanling, X. & Lin, L. (2012). Research on post-evaluation of oilfield ground engineering project. Management Science and Engineering, 6 (3): 30–33.Google Scholar
  29. [29]
    Zhou, Q. & Wicaksono, A. (2005). Proper interpretation of cased-hole resistivity logs. Petrophysics, 46 (2): 96–103.Google Scholar

Copyright information

© Systems Engineering Society of China and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hidayah Nurul Hasanah Zen
    • 1
  • Laila Wahyu Trimartanti
    • 1
  • Zaenal Abidin
    • 2
  • Agus Maman Abadi
    • 1
  1. 1.Department of MathematicsYogyakarta State UniversityYogyakartaIndonesia
  2. 2.STTN-BATANYogyakartaIndonesia

Personalised recommendations