Skip to main content
Log in

The role of eye movement signals in non-invasive brain-computer interface typing system

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Brain-Computer Interfaces (BCIs) have shown great potential in providing communication and control for individuals with severe motor disabilities. However, traditional BCIs that rely on electroencephalography (EEG) signals suffer from low information transfer rates and high variability across users. Recently, eye movement signals have emerged as a promising alternative due to their high accuracy and robustness. Eye movement signals are the electrical or mechanical signals generated by the movements and behaviors of the eyes, serving to denote the diverse forms of eye movements, such as fixations, smooth pursuit, and other oculomotor activities like blinking. This article presents a review of recent studies on the development of BCI typing systems that incorporate eye movement signals. We first discuss the basic principles of BCI and the recent advancements in text entry. Then, we provide a comprehensive summary of the latest advancements in BCI typing systems that leverage eye movement signals. This includes an in-depth analysis of hybrid BCIs that are built upon the integration of electrooculography (EOG) and eye tracking technology, aiming to enhance the performance and functionality of the system. Moreover, we highlight the advantages and limitations of different approaches, as well as potential future directions. Overall, eye movement signals hold great potential for enhancing the usability and accessibility of BCI typing systems, and further research in this area could lead to more effective communication and control for individuals with motor disabilities.

Graphical Abstract

This article delves into three pivotal components of the BCI typing system: data, algorithms, and interaction. The system leverages eye movement and EEG data as inputs, which are processed through algorithms for data fusion, feature extraction, and classification to yield output results. Furthermore, it facilitates real-time interaction by providing visual feedback via an efficient user interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wolpaw JR, Birbaumer N, Heetderks WJ et al (2000) Brain-Computer Interface Technology: A Review of the First International Meeting. IEEE Trans Rehabil Eng 8(2):164–173. https://doi.org/10.1109/TRE.2000.847807

    Article  CAS  PubMed  Google Scholar 

  2. Hosni SM, Shedeed HA, Mabrouk MS, Tolba MF (2019) EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface. Neuroinformatics 17(3):323–341. https://doi.org/10.1007/s12021-018-9402-0

    Article  PubMed  Google Scholar 

  3. Maslova O, Komarova Y, Shusharina N, Kolsanov A, Zakharov A, Garina E, Pyatin V (2023) Non-invasive EEG-based BCI spellers from the beginning to today: a mini-review. Front Hum Neurosci 23(17):1216648. https://doi.org/10.3389/fnhum.2023.1216648

    Article  Google Scholar 

  4. Welton T, Brown DJ, Evett L, Sherkat N (2016) A brain–computer interface for the Dasher alternative text entry system. Univers Access Inf Soc 15(1):77–83. https://doi.org/10.1007/s10209-014-0375-y

    Article  Google Scholar 

  5. Cao L, Xia B, Maysam O, Li J, Xie H, Birbaumer N (2017) A synchronous motor imagery based neural physiological paradigm for brain computer interface speller. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2017.00274

    Article  PubMed  PubMed Central  Google Scholar 

  6. Farwell L, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523. https://doi.org/10.1016/0013-4694(88)90149-6

    Article  CAS  PubMed  Google Scholar 

  7. Zhang D, Li J (2017) Exploring the power of mind: Status and prospect of brain-computer interfaces Multi-modal emotion recognition and its application in user experiencehttps://doi.org/10.3981/j.issn.1000-7857.2017.09.008

  8. Ramirez-Quintana JA, Madrid-Herrera L, Chacon-Murguia MI, Corral-Martinez LF (2021) Brain-Computer Interface System Based on P300 Processing with Convolutional Neural Network, Novel Speller, and Low Number of Electrodes. Cognit Comput 13(1):108–124. https://doi.org/10.1007/s12559-020-09744-2

    Article  Google Scholar 

  9. Mussabayeva A, Jamwal PK, Akhtar MT (2021) Ensemble voting-based multichannel eeg classification in a subject-independent p300 speller. Applied Sciences (Switzerland) 11(23). https://doi.org/10.3390/app112311252

  10. Chen X, Wang Y, Nakanishi M, Jung TP, Gao X (2014) Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014. Institute of Electrical and Electronics Engineers Inc. 3993–3996. https://doi.org/10.1109/EMBC.2014.6944499

  11. Chen Y, Yang C, Ye X, Chen X, Wang Y, Gao X (2021) Implementing a calibration-free SSVEP-based BCI system with 160 targets. J Neural Eng 18(4). https://doi.org/10.1088/1741-2552/ac0bfa

  12. Chen J, Wang Y, Maye A et al (2021) A spatially-coded visual brain-computer interface for flexible visual spatial information decoding. IEEE Trans Neural Syst Rehabil Eng 29:926–933. https://doi.org/10.1109/TNSRE.2021.3080045

    Article  PubMed  Google Scholar 

  13. Guney OB, Oblokulov M, Ozkan H (2022) A Deep Neural Network for SSVEP-Based Brain-Computer Interfaces. IEEE Trans Biomed Eng 69(2):932–944. https://doi.org/10.1109/TBME.2021.3110440

    Article  PubMed  Google Scholar 

  14. Katyal EA, Singla R (2021) EEG-based hybrid QWERTY mental speller with high information transfer rate. Med Biol Eng Comput 633–661. https://doi.org/10.1007/s11517-020-02310-w/Published

  15. Uma M, Prabhu S, Subramaniyam M, Min SN (2021) Analysis of Effect of RSVP Speller BCI Paradigm Along with CNN to Analysis P300 Signals. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 12776 LNAI. Springer Science and Business Media Deutschland GmbH 2021:84–96. https://doi.org/10.1007/978-3-030-78114-9_7

  16. Rathi N, Singla R, Tiwari S (2021) A novel approach for designing authentication system using a picture based P300 speller. Cogn Neurodyn 15(5):805–824. https://doi.org/10.1007/s11571-021-09664-3

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li M, He D, Li C, Qi S (2021) Brain–computer interface speller based on steady-state visual evoked potential: A review focusing on the stimulus paradigm and performance. Brain Sci 11(4). https://doi.org/10.3390/brainsci11040450

  18. Mahanama B, Jayawardana Y, Rengarajan S et al (2022) Eye movement and pupil measures: A review. Frontiers in Computer Science 3:733531. https://doi.org/10.3389/fcomp.2021.733531

    Article  Google Scholar 

  19. Majaranta P, Räihä KJ (2002) Twenty Years of Eye Typing: Systems and Design Issues. In: Proceedings of the 2002 symposium on Eye tracking research & applications. pp 15–22. https://doi.org/10.1145/507072.507076

  20. Kalaganis FP, Chatzilari E, Nikolopoulos S, Kompatsiaris I, Laskaris NA (2018) An error-aware gaze-based keyboard by means of a hybrid BCI system. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-31425-2

  21. Chang Z, Di Martino JM, Aiello R et al (2021) Computational Methods to Measure Patterns of Gaze in Toddlers with Autism Spectrum Disorder. JAMA Pediatr 175(8):827–836. https://doi.org/10.1001/jamapediatrics.2021.0530

    Article  PubMed  Google Scholar 

  22. Kim M, Kim BH, Jo S (2015) Quantitative Evaluation of a Low-Cost Noninvasive Hybrid Interface Based on EEG and Eye Movement. IEEE Trans Neural Syst Rehabil Eng 23(2):159–168. https://doi.org/10.1109/TNSRE.2014.2365834

    Article  PubMed  Google Scholar 

  23. Wolpaw JR, Ramoser H, Mcfarland DJ, Pfurtscheller G (1998) EEG-Based Communication: Improved Accuracy by Response Verification. Vol 6. https://doi.org/10.1109/86.712231

  24. Bai X, Li M, Qi S, Ng ACM, Ng T, Qian W (2023) A hybrid P300-SSVEP brain-computer interface speller with a frequency enhanced row and column paradigm. Front Neurosci 17:1133933. https://doi.org/10.3389/fnins.2023.1133933

    Article  PubMed  PubMed Central  Google Scholar 

  25. Han J, Xu M, Xiao X, Yi W, Jung T-P, Ming D (2023) A high-speed hybrid brain-computer interface with more than 200 targets. J Neural Eng 20(1):016025. https://doi.org/10.1088/1741-2552/acb105

    Article  Google Scholar 

  26. Raheel A, Anwar SM, Majid M, Khan B, Ehatisham H (2016) Real time text speller based on eye movement classification using wearable EEG sensors. In: Proceedings of 2016 SAI Computing Conference, SAI 2016. Institute of Electrical and Electronics Engineers Inc. 2016:161–164. https://doi.org/10.1109/SAI.2016.7555977

  27. Nguyen TH, Yang DL, Chung WY (2018) A high-rate BCI speller based on eye-closed EEG Signal. IEEE Access 6:33995–34003. https://doi.org/10.1109/ACCESS.2018.2849358

    Article  Google Scholar 

  28. Chugh N, Aggarwal S (2023) Hybrid Brain-Computer Interface Spellers: A Walkthrough Recent Advances in Signal Processing Methods and Challenges. Int J Human-Comput Interact 39(15):3096–3113. https://doi.org/10.1080/10447318.2022.2093445

    Article  Google Scholar 

  29. Yildiz M, Ülkütaş HÖ (2018) A New PC-Based Text Entry System Based on EOG Coding. Adv Human-Comput Interact. https://doi.org/10.1155/2018/8528176

    Article  Google Scholar 

  30. Duraisamy S, Reddy MR (2020) A high performance asynchronous EOG speller system. Biomed Signal Process Control 59. https://doi.org/10.1016/j.bspc.2020.101898

  31. Jia Y, Tyler CW (2019) Measurement of saccadic eye movements by electrooculography for simultaneous EEG recording. Behav Res Methods 51(5):2139–2151. https://doi.org/10.3758/s13428-019-01280-8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Duraisamy S, Reddy MR (2020) A virtual speller system using SSVEP and electrooculogram. Adv Eng Inf 44. https://doi.org/10.1016/j.aei.2020.101059

  33. Duraisamy S, Reddy MR (2021) Stimulus Paradigm for an Asynchronous Concurrent SSVEP and EOG Based BCI Speller System. IEEE Access 9:127484–127495. https://doi.org/10.1109/ACCESS.2021.3112257

    Article  Google Scholar 

  34. Lee MH, Williamson J, Won DO, Fazli S, Lee SW (2018) A High Performance Spelling System based on EEG-EOG Signals with Visual Feedback. IEEE Trans Neural Syst Rehabil Eng 26(7):1443–1459. https://doi.org/10.1109/TNSRE.2018.2839116

    Article  PubMed  Google Scholar 

  35. Yu Y, Liu Y, Yin E, Jiang J, Zhou Z, Hu D (2019) An Asynchronous Hybrid Spelling Approach Based on EEG-EOG Signals for Chinese Character Input. IEEE Trans Neural Syst Rehabil Eng 27(6):1292–1302. https://doi.org/10.1109/TNSRE.2019.2914916

    Article  PubMed  Google Scholar 

  36. Zhang J, Zhou K, Mao S, Chen Y (2022) A novel hybrid BCI system based on SSVEP and EOG. In Proceedings of SPIE 12500, Fifth International Conference on Mechatronics and Computer Technology Engineering (MCTE 2022), 125002J. https://doi.org/10.1117/12.2660968

  37. Zhang J, Gao S, Zhou K, Cheng Y, Mao S (2023) An online hybrid BCI combining SSVEP and EOG-based eye movements. Front Hum Neurosci 17:1103935. https://doi.org/10.3389/fnhum.2023.1103935

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ha J, Park S, Im CH (2022) Novel hybrid brain-computer interface for virtual reality applications using steady-state visual-evoked potential-based brain–computer interface and electrooculogram-based eye tracking for increased information transfer rate. Front Neuroinform 16:758537. https://doi.org/10.3389/fninf.2022.758537

    Article  PubMed  PubMed Central  Google Scholar 

  39. Duchowski TA (2017) Eye tracking: methodology theory and practice. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-57883-5

  40. Naeem Mannan MM, Kamran MA, Kang S, Choi HS, Jeong MY (2020) A hybrid speller design using eye tracking and SSVEP brain–computer interface. Sensors (Switzerland) 20(3). https://doi.org/10.3390/s20030891

  41. Stawicki P, Gembler F, Rezeika A, Volosyak I (2017) A novel hybrid mental spelling application based on eye tracking and SSVEP-based BCI. Brain Sci 7(4). https://doi.org/10.3390/brainsci7040035

  42. Saboor A, Benda M, Rezeika A, et al (2018) Mesh of SSVEP-based BCI and eye-Tracker for use of higher frequency stimuli and lower number of EEG channels. In: Proceedings - 2018 International Conference on Frontiers of Information Technology, FIT 2018. Institute of Electrical and Electronics Engineers Inc. 2019:99–104. https://doi.org/10.1109/FIT.2018.00025

  43. Haddad RR, Bastos-Filho TF, Tello RJMG (2019) A novel digital speller based on a hybrid brain computer interface (hbci) ssvep with eye tracking. In: IFMBE Proceedings. Vol 70. Springer Verlag 593–601. https://doi.org/10.1007/978-981-13-2119-1_92

  44. Lin X, Chen Z, Xu K, Zhang S (2019) Development of a High-speed Mental Spelling System Combining Eye Tracking and SSVEP-based BCI with High Scalability. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 6318–6322. https://doi.org/10.1109/embc.2019.8857408

    Chapter  Google Scholar 

  45. Kalika D, Collins L, Caves K, Throckmorton C (2017) Fusion of P300 and eye-tracker data for spelling using BCI2000. J Neural Eng 14(5). https://doi.org/10.1088/1741-2552/aa776b

  46. Li H, Fang X, Ye Z, Chu X, Lu G, Yu Y (2022) A practical hybrid BCI speller for Chinese Character Input: Integrating an Eye Tracker into a P300-Based Spelling approach. In Proceedings of the 5th International Conference on Computer Science and Software Engineering (CSSE 22). Association for Computing Machinery, New York, NY, USA, 237–242. https://doi.org/10.1145/3569966.3570046

  47. Ma X, Yao Z, Wang Y, Pei W, Chen H (2018) Combining brain-computer interface and eye tracking for high-speed text entry in virtual reality. In: International Conference on Intelligent User Interfaces, Proceedings IUI. Association for Computing Machinery. 2018:263–267. https://doi.org/10.1145/3172944.3172988

  48. Tan Y, Lin Y, Zang B et al (2022) An autonomous hybrid brain-computer interface system combined with eye-tracking in virtual environment. J Neurosci Methods 368:109442. https://doi.org/10.1016/j.jneumeth.2021.109442

    Article  CAS  PubMed  Google Scholar 

  49. Jiang L, Li X, Pei W, Gao X, Wang Y (2022) A hybrid brain-computer interface based on visual evoked potential and pupillary response. Front Hum Neurosci 16:834959. https://doi.org/10.3389/fnhum.2022.834959

    Article  PubMed  PubMed Central  Google Scholar 

  50. Speier W, Arnold C, Pouratian N (2016) Integrating language models into classifiers for BCI communication: A review. J Neural Eng 13(3). https://doi.org/10.1088/1741-2560/13/3/031002

  51. He S, Li Y (2017) A single-channel EOG-based speller. IEEE Trans Neural Syst Rehabil Eng 25(11):1978–1987. https://doi.org/10.1109/TNSRE.2017.2716109

    Article  PubMed  Google Scholar 

  52. Fang T, Song Z, Niu L, et al (2021) Recent Advances of P300 Speller Paradigms and Algorithms. In: 9th IEEE International Winter Conference on Brain-Computer Interface, BCI 2021. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/BCI51272.2021.9385369

  53. Yang L, Song Y, Ma K, Xie L (2021) Motor Imagery EEG Decoding Method Based on a Discriminative Feature Learning Strategy. IEEE Trans Neural Syst Rehabil Eng 29:368–379. https://doi.org/10.1109/TNSRE.2021.3051958

    Article  PubMed  Google Scholar 

  54. Jeannerod M (1995) Mental imagery in the motor context. Vol 33. https://doi.org/10.1016/0028-3932(95)00073-C

  55. Blankertz B, Dornhege G, Krauledat M et al (2006) The berlin brain-computer interface presents the novel mental typewriter HEX-O-SPELL. In: Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course, September 21-2. Graz, Austria, pp 108–109

  56. Chen C, Yang J, Xia B (2013) A cursor control based Chinese-English brain-computer interface speller. Transactions of Japanese Society for Medical and Biological Engineering, Published online

    Google Scholar 

  57. Xia B, Yang J, Cheng C, Xie H (2013) A Motor Imagery Based Brain-Computer Interface Speller. In Advances in Computational Intelligence: 12th International Work-Conference on Artificial Neural Networks, IWANN 2013, vol 7903. Lecture Notes in Computer Science, pp 413–421. https://doi.org/10.1007/978-3-642-38682-4_44

    Chapter  Google Scholar 

  58. Nama T, Samanta D (2022) Quarter Circle Speller: EEG Motor Imagery Signal-Based Text Entry System for Motor-Impaired People. Published online, Int J Hum Comput Stud

    Google Scholar 

  59. Bevilacqua M, Perdikis S, del Millán J, R, (2020) On error-related potentials during sensorimotor-based brain-computer interface: Explorations with a pseudo-online brain-controlled speller. IEEE Open J Eng Med Biol 1:17–22. https://doi.org/10.1109/OJEMB.2019.2962879

    Article  PubMed  Google Scholar 

  60. Hou Y, Zhou L, Jia S, Lun X (2020) A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN. In: Journal of Neural Engineering. Vol 17. Institute of Physics Publishing. https://doi.org/10.1088/1741-2552/ab4af6

  61. Deng X, Zhang B, Yu N, Liu K, Sun K (2021) Advanced TSGL-EEGNet for Motor Imagery EEG-Based Brain-Computer Interfaces. IEEE Access 9:25118–25130. https://doi.org/10.1109/ACCESS.2021.3056088

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Key Laboratory of Spectral Imaging Technology, Xi’an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences (54S18-014), the Key Laboratory of Biomedical Spectroscopy of Xi’an (201805050ZD1CG34), the Outstanding Award for Talent Project of the Chinese Academy of Sciences (29J20-052-III), “From 0 to 1” Original Innovation Project of the Basic Frontier Scientific Research Program of the Chinese Academy of Sciences (29J20-015-III).

Author information

Authors and Affiliations

Authors

Contributions

Idea: Quan Wang, Xi Liu; Literature search and data analysis: Xi Liu; Draft: Xi Liu; Revision: Yang Si, Bingliang Hu, Quan Wang.

Corresponding author

Correspondence to Quan Wang.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hu, B., Si, Y. et al. The role of eye movement signals in non-invasive brain-computer interface typing system. Med Biol Eng Comput (2024). https://doi.org/10.1007/s11517-024-03070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11517-024-03070-7

Keywords

Navigation