Skip to main content

Advertisement

Log in

Biomechanical influence of plate configurations on mandible subcondylar fracture fixation: a finite element study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Mandible subcondylar fractures have very high complication rate, yet there is no consensus on suitable plate design for optimal patient outcomes. Our study is aimed at comparing single mini, trapezoid, lambda, strut and double mini plates. A finite-element (FE) model of intact mandible was developed based on healthy CT-scan data, which was further virtually osteotomized and fixated with plates. The cortical and cancellous bones were assigned region-specific orthotropic and heterogenous isotropic material properties respectively. The models were subjected to six load cases representing the mastication cycle. Under opposite lateralities, the tensile and compressive mandibular strain distributions were found as the opposite, with tensile strains at the posterior border under ipsilateral molar clenching (RMOL) resulting in lesser mandibular strain in reconstructed mandible with single mini plate under RMOL but highest mandibular strain under the contralateral molar clenching (LMOL). Owing to the reduced mandibular strains under LMOL than RMOL, the contralateral chewing is preferred during the immediate post-surgery period for patients. Under LMOL, the peak von Mises stresses in the plate decreased with increase in the number of screws. Furthermore, the presence of two arms in double mini and trapezoid plates seems beneficial to neutralise the tensile and compressive strains across load cases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gomez Rosello E, QuilesGranado AM, Artajona Garcia M, Juanpere Marti S, Laguillo Sala G, Beltran Marmol B, Pedraza Gutierrez S (2020) Facial fractures: classification and highlights for a useful report. Insights Imaging 11:49

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sukegawa S, Kanno T, Masui M, Sukegawa-Takahashi Y, Kishimoto T, Sato A, Furuki Y (2019) Which fixation methods are better between three-dimensional anatomical plate and two miniplates for the mandibular subcondylar fracture open treatment? J Craniomaxillofac Surg 47:771

    Article  PubMed  Google Scholar 

  3. Abdel-Galil K, Loukota R (2010) Fractures of the mandibular condyle: evidence base and current concepts of management. Br J Oral Maxillofac Surg 48:520

    Article  PubMed  Google Scholar 

  4. Nasser M, Pandis N, Fleming PS, Fedorowicz Z, Ellis E, Ali K (2013) Interventions for the management of mandibular fractures. Cochrane Database Syst Rev 7:CD006087

    Google Scholar 

  5. Hijazi L, Hejazi W, Darwich MA, Darwich K (2016) Finite element analysis of stress distribution on the mandible and condylar fracture osteosynthesis during various clenching tasks. Oral Maxillofac Surg 20:359

    Article  PubMed  Google Scholar 

  6. Adhikari M, Bhatt K, Yadav R, Mandal J, Bhutia O, Roychoudhury A (2021) Fixation of subcondylar fractures of the mandible: a randomized clinical trial comparing one trapezoidal plate with two miniplates. Int J Oral Maxillofac Surg 50:756

    Article  CAS  PubMed  Google Scholar 

  7. Choi BH, Kim KN, Kim HJ, Kim MK (1999) Evaluation of condylar neck fracture plating techniques. J Craniomaxillofac Surg 27:109

    Article  CAS  PubMed  Google Scholar 

  8. Tominaga K, Habu M, Khanal A, Mimori Y, Yoshioka I, Fukuda J (2006) Biomechanical evaluation of different types of rigid internal fixation techniques for subcondylar fractures. J Oral Maxillofac Surg 64:1510

    Article  PubMed  Google Scholar 

  9. Wagner A, Krach W, Schicho K, Undt G, Ploder O, Ewers R (2002) A 3-dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94:678

    Article  PubMed  Google Scholar 

  10. Hammer B, Schier P, Prein J (1997) Osteosynthesis of condylar neck fractures: a review of 30 patients. Br J Oral Maxillofac Surg 35:288

    Article  CAS  PubMed  Google Scholar 

  11. Choi BH, Yi CK, Yoo JH (2001) Clinical evaluation of 3 types of plate osteosynthesis for fixation of condylar neck fractures. J Oral Maxillofac Surg 59:734

    Article  CAS  PubMed  Google Scholar 

  12. Meyer C, Serhir L, Boutemi P (2006) Experimental evaluation of three osteosynthesis devices used for stabilizing condylar fractures of the mandible. J Craniomaxillofac Surg 34:173

    Article  PubMed  Google Scholar 

  13. Murakami K, Yamamoto K, Sugiura T, Horita S, Matsusue Y, Kirita T (2017) Computed tomography-based 3-dimensional finite element analyses of various types of plates placed for a virtually reduced unilateral condylar fracture of the mandible of a patient. J Oral Maxillofac Surg 75:1239 e1

    Article  PubMed  Google Scholar 

  14. Darwich MA, Albogha MH, Abdelmajeed A, Darwich K (2016) Assessment of the biomechanical performance of 5 plating techniques in fixation of mandibular subcondylar fracture using finite element analysis. J Oral Maxillofac Surg 74:794 e1

    Article  PubMed  Google Scholar 

  15. Conci RA, Tomazi FH, Noritomi PY, da Silva JV, Fritscher GG, Heitz C (2015) Comparison of neck screw and conventional fixation techniques in mandibular condyle fractures using 3-dimensional finite element analysis. J Oral Maxillofac Surg 73:1321

    Article  PubMed  Google Scholar 

  16. de Jesus GP, Vaz LG, Gabrielli MF, Passeri LA (2014) T VO, Noritomi PY, Jurgens P: Finite element evaluation of three methods of stable fixation of condyle base fractures. Int J Oral Maxillofac Surg 43:1251

    Article  PubMed  Google Scholar 

  17. Albogha MH, Mori Y, Takahashi I (2018) Three-dimensional titanium miniplates for fixation of subcondylar mandibular fractures: comparison of five designs using patient-specific finite element analysis. J Craniomaxillofac Surg 46:391

    Article  PubMed  Google Scholar 

  18. Liokatis P, Tzortzinis G, Gerasimidis S, Smolka W (2022) Finite element analysis of different titanium miniplates: evaluation of three-dimensional designs applied on condylar neck fractures. J Stomatol Oral Maxillofac Surg 123:184

    Article  PubMed  Google Scholar 

  19. Ergezen E, Akdeniz SS (2020) Evaluation of stress distribution of four different fixation systems at high- and low-level subcondylar fractures on a nonhomogenous finite element model. J Oral Maxillofac Surg 78:1596 e1

    Article  PubMed  Google Scholar 

  20. Dutta A, Mukherjee K, Dhara S, Gupta S (2019) Design of porous titanium scaffold for complete mandibular reconstruction: the influence of pore architecture parameters. Comput Biol Med 108:31

    Article  CAS  PubMed  Google Scholar 

  21. Dutta A, Mukherjee K, Seesala VS, Dutta K, Paul RR, Dhara S, Gupta S (2020) Load transfer across a mandible during a mastication cycle: the effects of odontogenic tumour. Proc Inst Mech Eng H 234:486

    Article  PubMed  Google Scholar 

  22. Ichim I, Swain MV, Kieser JA (2006) Mandibular stiffness in humans: numerical predictions. J Biomech 39:1903

    Article  CAS  PubMed  Google Scholar 

  23. MehariAbraha H, Iriarte-Diaz J, Ross CF, Taylor AB, Panagiotopoulou O (2019) The mechanical effect of the periodontal ligament on bone strain regimes in a validated finite element model of a macaque mandible. Front Bioeng Biotechnol 7:269

    Article  Google Scholar 

  24. Korioth TW, Romilly DP, Hannam AG (1992) Three-dimensional finite element stress analysis of the dentate human mandible. Am J Phys Anthropol 88:69

    Article  CAS  PubMed  Google Scholar 

  25. Polgar K, Viceconti M, O’Connor JJ (2001) A comparison between automatically generated linear and parabolic tetrahedra when used to mesh a human femur. Proc Inst Mech Eng H 215:85

    Article  CAS  PubMed  Google Scholar 

  26. Mukherjee K, Gupta S (2017) Mechanobiological simulations of peri-acetabular bone ingrowth: a comparative analysis of cell-phenotype specific and phenomenological algorithms. Med Biol Eng Comput 55:449

    Article  PubMed  Google Scholar 

  27. Mukherjee K, Gupta S (2016) The effects of musculoskeletal loading regimes on numerical evaluations of acetabular component. Proc Inst Mech Eng H 230:918

    Article  PubMed  Google Scholar 

  28. Mukherjee K, Gupta S (2016) Bone ingrowth around porous-coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithm. Biomech Model Mechanobiol 15:389

    Article  PubMed  Google Scholar 

  29. Dalstra M, Huiskes R, Odgaard A, van Erning L (1993) Mechanical and textural properties of pelvic trabecular bone. J Biomech 26:523

    Article  CAS  PubMed  Google Scholar 

  30. Mukherjee K, Gupta S (2017) Combined bone ingrowth and remodeling around uncemented acetabular component: a multiscale mechanobiology-based finite element analysis. J Biomech Eng 139(9):091007

  31. Reina JM, Garcia-Aznar JM, Dominguez J, Doblare M (2007) Numerical estimation of bone density and elastic constants distribution in a human mandible. J Biomech 40:828

    Article  CAS  PubMed  Google Scholar 

  32. Manns A, Dias G (1988) Sistema estomatognático. Facultad de Odontología, Universidad de Chile, Santiago

  33. Shockey JS, von Fraunhofer JA, Seligson D (1985) A measurement of the coefficient of static friction of human long bones. Surface Technol 25:167

    Article  Google Scholar 

  34. O’Connor CF, Franciscus RG, Holton NE (2005) Bite force production capability and efficiency in Neandertals and modern humans. Am J Phys Anthropol 127:129

    Article  PubMed  Google Scholar 

  35. Glatt V, Evans CH, Tetsworth K (2017) A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front Physiol 7:678

  36. Niinomi M (1998) Mechanical properties of biomedical titanium alloys. Mater Sci Eng, A 243:231

    Article  Google Scholar 

  37. Ji B, Wang C, Song F, Chen M, Wang H (2012) A new biomechanical model for evaluation of fixation systems of maxillofacial fractures. J Craniomaxillofac Surg 40:405

    Article  PubMed  Google Scholar 

  38. Hjorth T, Melsen B, Moller E (1997) Masticatory muscle function after unilateral condylar fractures: a prospective and quantitative electromyographic study. Eur J Oral Sci 105:298

    Article  CAS  PubMed  Google Scholar 

  39. Perren SM (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res 175

  40. Soballe K (1993) Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Suppl 255:1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Mukherjee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3238 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Dutta, A., Dutta, K. et al. Biomechanical influence of plate configurations on mandible subcondylar fracture fixation: a finite element study. Med Biol Eng Comput 61, 2581–2591 (2023). https://doi.org/10.1007/s11517-023-02854-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02854-7

Keywords

Navigation