Skip to main content
Log in

Evaluation of heat transfer in porous scaffolds under cryogenic treatment: a numerical study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The present work had evaluated the effect of cryogenic treatment (233 K) on the degradation of polymeric biomaterial using a numerical model. The study on effect of cryogenic temperature on mechanical properties of cell-seeded biomaterials is very limited. However, no study had reported material degradation evaluation. Different structures of silk-fibroin-poly-electrolyte complex (SFPEC) scaffolds had been designed by varying hole distance and hole diameter, with reference to existing literature. The size of scaffolds were maintained at 5 \(\times\) 5 mm2. Current study evaluates the effect of cryogenic temperature on mechanical properties (corelated to degradation) of scaffold. Six parameters related to scaffold degradation: heat transfer, deformation gradient, stress, strain, strain tensor, and displacement gradient were analyzed for three different cooling rates (− 5 K/min, − 2 K/min, and − 1 K/min). Scaffold degradation had been evaluated in the presence of water and four different concentrations of cryoprotectant solution. Heat distribution at various points (points_base, point_wall and point_core) on the region of interest (ROI) was found similar for different cooling rates of the system. Thermal stress was found developing proportional to cooling rate, which leads to minimal variation in thermal stress over time. Strain tensor was found gradually decreasing due to attenuating response of deformation gradient. In addition to that, dipping down of cryogenic temperature had prohibited the movement of molecules in the crystalline structure which had restricting the displacement gradient. It was found that uniform distribution of desired heat at different cooling rates has the ability to minimize the responses of other scaffold degradation parameters. It was found that the rates of change in stress, strain, and strain tensor were minimal at different concentrations of cryoprotectant. The present study had predicted the degradation behavior of PEC scaffold under cryogenic temperature on the basis of explicit mechanical properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data used to support the finding of this study are included with in the article.

References

  1. Yang J, Gao L, Liu M et al (2020) Advanced biotechnology for cell cryopreservation. Trans Tianjin Univ 26(6):409–423. https://doi.org/10.1007/s12209-019-00227-6

    Article  Google Scholar 

  2. Chandra G, Fopp-Bayat D (2021) Trends in aquaculture and conservation of sturgeons: a review of molecular and cytogenetic tools. Rev Aquac 13(1):119–137

    Article  Google Scholar 

  3. Afrimzon E, Zurgil N, Shafran Y, Ehrhart F, Namer Y, Moshkov S, Sobolev M, Deutsch A, Howitz A, Greuner M, Thaele M (2010) The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. II: Functional activity of cryopreserved cells. BMC cell biology 11(1):1–13

    Article  Google Scholar 

  4. Fuest M, Nocera GM, Modena MM, Riedel D, Mejia YX, Burg TP (2018) Cryofixation during live-imaging enables millisecond time-correlated light and electron microscopy. J Microsc 272(2):87–95. https://doi.org/10.1111/jmi.12747

    Article  CAS  PubMed  Google Scholar 

  5. Jahan S, Kaushal R, Pasha R, Pineault N (2021) Current and future perspectives for the cryopreservation of cord blood stem cells. Transfus Med Rev 35(2):95–102

    Article  PubMed  Google Scholar 

  6. Hoon T, Choel S, Hyun J et al (2017) Cryopreservation and its clinical applications. Integr Med Res 6(1):12–18. https://doi.org/10.1016/j.imr.2016.12.001

    Article  Google Scholar 

  7. El Cury-Silva T, Nunes ME, Casalechi M, Comim FV, Rodrigues JK, Reis FM (2021) Cryoprotectant agents for ovarian tissue vitrification: Systematic review. Cryobiology 103:7–14

    Article  PubMed  Google Scholar 

  8. García-Martínez T, Mogas T, Mullen SF, Martínez-Rodero I, Gulieva RE, Higgins AZ (2021) Effect of cryoprotectant concentration on bovine oocyte permeability and comparison of two membrane permeability modelling approaches. Sci Rep 11(1):1–15

    Article  Google Scholar 

  9. Warner RM, Ampo E, Nelson D, Benson JD, Eroglu A, Higgins AZ (2021) Rapid quantification of multi-cryoprotectant toxicity using an automated liquid handling method. Cryobiology 98:219–232

    Article  CAS  PubMed  Google Scholar 

  10. Gurruchaga H, L SB, Hernandez RM, Orive G, Selden C, Fuller B (2018) Advances in the slow freezing cryopreservation of microencapsulated cells 281(March):119-138. https://doi.org/10.1016/j.jconrel.2018.05.016

  11. Borrás A, Manau D, Fabregues F, Peralta S, Calafell JM, Casals G, Saco A, Agustí I, Carmona F (2022) Comparison between slow freezing and vitrification of ovarian tissue cryopreservation in assigned female at birth transgender people receiving testosterone therapy: data on histological and viability parameters. J Assist Reprod Genet 39(2):527–541

    Article  PubMed  PubMed Central  Google Scholar 

  12. Medrano A, Anderson WJ, Millar JD, Holt WV, Watson PF (2002) A custom-built controlled-rate freezer for small sample cryopreservation studies. Cryo-Letters 23(6):397–404

    CAS  PubMed  Google Scholar 

  13. Arav A (2022) Cryopreservation by directional freezing and vitrification focusing on large tissues and organs. Cells 11(7):1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer D, Brinksmeier E, Hoffmann F (2011) Surface hardening by cryogenic deep rolling. Proc Eng 19:258–263

    Article  CAS  Google Scholar 

  15. Kumar M, Rai KN Numerical simulation of variable fractional order bioheat equation in cancer treatment. Available at SSRN 4216382, pp. 1-27 

  16. Kumar M, Upadhyay S, Rai KN (2018) A study of cryosurgery of lung cancer using Modified Legendre wavelet Galerkin method. J Therm Biol 78:356–366

    Article  PubMed  Google Scholar 

  17. Kumar M, Rai KN (2021) Numerical study of cryosurgical treatment of skin cancer. Int J Therm Sci 160:106667

    Article  CAS  Google Scholar 

  18. Kumar M, Rai KN (2022) Three phase bio-heat transfer model in three-dimensional space for multiprobe cryosurgery. J Therm Anal Calorim 147(24):14491–14507. https://doi.org/10.1007/s10973-022-11566-3

    Article  CAS  Google Scholar 

  19. Gunjal A, Srivastava A, Atrey MD (2022) Multiple cryoprobe placement strategy for a single freeze cryosurgery planning. Case Stud Ther Eng 34:101992

    Article  Google Scholar 

  20. Kumar D, Singh S, Rai KN (2016) Analysis of classical Fourier, SPL and DPL heat transfer model in biological tissues in presence of metabolic and external heat source. Heat Mass Transf 52(6):1089–1107

    Article  Google Scholar 

  21. Wei Q, Wang S, Han F, Wang H, Zhang W, Yu Q, Liu C, Ding L, Wang J, Yu L, Zhu C (2021) Cellular modulation by the mechanical cues from biomaterials for tissue engineering. Biomater Transl 2(4):323–342

    PubMed  PubMed Central  Google Scholar 

  22. Nijabat A, Bolton A, Mahmood-ur-Rehman M, Shah AI, Hussain R, Naveed NH, Ali A, Simon P (2020) Cell membrane stability and relative cell injury in response to heat stress during early and late seedling stages of diverse carrot (Daucus carota L.) germplasm. Hortscience 55(9):1446–1452

    Article  Google Scholar 

  23. Deshmukh K, Gupta S, Mitra K, Bit A (2022) Numerical and experimental analysis of shear stress influence on cellular viability in serpentine vascular channels. Micromachines 13(10):1766

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sonia P, Verma V, Saxena KK, Kishore N, Rana RS (2020) Effect of cryogenic treatment on mechanical properties and microstructure of aluminium 6082 alloy. Mater Today: Proc 26:2248–2253

    Article  CAS  Google Scholar 

  25. Munir N, Larsen RS, Callanan A (2018) Fabrication of 3D cryo-printed scaffolds using low-temperature deposition manufacturing for cartilage tissue engineering. Bioprinting 10:e00033

    Article  Google Scholar 

  26. Chen Y, Zhou S, Li Q (2011) Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. Acta Biomater 7(3):1140–1149

    Article  CAS  PubMed  Google Scholar 

  27. Kumar J, Verma R, Singh NK, Singh NK, Nirala NS, Rai SK (2022) Mechanical property analysis of triply periodic minimal surface inspired porous scaffold for bone applications: a compromise between desired mechanical strength and additive manufacturability. J Mater Eng Perform 32(7):3335–3347. https://doi.org/10.1007/s11665-022-07322-1

    Article  CAS  Google Scholar 

  28. Costa PF, Dias AF, Reis RL, Gomes ME (2012) Cryopreservation of cell/scaffold tissue-engineered constructs. Tissue Eng - Part C Methods 18(11):852–858. https://doi.org/10.1089/ten.tec.2011.0649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arai K, Murata D, Takao S, Verissiomo AR, Nakayama K (2020) Cryopreservation method for spheroids and fabrication of scaffold-free tubular constructs. PLoS One 15(4):1–13. https://doi.org/10.1371/journal.pone.0230428

    Article  CAS  Google Scholar 

  30. Theodoridis K, Müller J, Ramm R et al (2016) Effects of combined cryopreservation and decellularization on the biomechanical, structural and biochemical properties of porcine pulmonary heart valves. A Biomater 2016(43):71–77. https://doi.org/10.1016/j.actbio.2016.07.013

    Article  CAS  Google Scholar 

  31. Pillet B, Badel P, Pierrat B (2022) Effects of cryo-preservation on skeletal muscle tissues mechanical behavior under tensile and peeling tests until rupture. J Mech Behav Biomed Mater 132:105273. https://doi.org/10.1016/j.jmbbm.2022.105273

  32. Carrillo, J. A., Fornasier, M., Rosado, J., & Toscani, G. (2010). Downloaded 03 / 24 / 14 to 150 . 203 . 210 . 155 . Redistribution subject to SIAM license or copyright ; see http://www.siam.org/journals/ojsa.php Copyright © by SIAM. Unauthorized reproduction of this article is prohibited., 42(1), 218–236.

  33. Chang T, Moses OA, Tian C, Wang H, Song L, Zhao G (2021) Synergistic ice inhibition effect enhances rapid freezing cryopreservation with low concentration of cryoprotectants. Adv Sci 8(6):2003387

    Article  CAS  Google Scholar 

  34. Baust JG, Gao D, Baust JM (2009) Cryopreservation: An emerging paradigm change. Organogenesis 5(3):90–96. https://doi.org/10.4161/org.5.3.10021

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tripathy S, Singh S, Das SK (2022) Cryopreservation of mesenchymal stem cells (MSCs) derived from bone marrow with carbohydrate additive sucrose and dimethyl sulfoxide (DMSO). In Contemporary Medical Biotechnology Research for Human Health (pp. 177–186). Academic Press

  36. Bose S, Darsell J, Kintner M, Hosick H, Bandyopadhyay A (2003) Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater Sci Eng, C 23(4):479–486

    Article  Google Scholar 

  37. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26(4):433–441

    Article  PubMed  Google Scholar 

  38. Barry JJ, Silva MM, Cartmell SH, Guldberg RE, Scotchford CA, Howdle SM (2006) Porous methacrylate tissue engineering scaffolds: using carbon dioxide to control porosity and interconnectivity. J Mater Sci 41:4197–4204

    Article  CAS  Google Scholar 

  39. Nava MM, Draghi L, Giordano C, Pietrabissa R (2016) The effect of scaffold pore size in cartilage tissue engineering. J Appl Biomater Funct Mater 14(3):e223–e229

    CAS  PubMed  Google Scholar 

  40. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 3:1–61. https://doi.org/10.1089/ten.TEB.2012.0437

    Article  Google Scholar 

  41. Kokol V, Pottathara YB, Mihelčič M, Perše LS (2021) Rheological properties of gelatine hydrogels affected by flow-and horizontally-induced cooling rates during 3D cryo-printing. Colloids Surf A 616:126356

    Article  CAS  Google Scholar 

  42. Warwicker JO (1954) The crystal structure of silk fibroin. Acta Crystallogr A 7(8–9):565–573

    Article  CAS  Google Scholar 

  43. Hu X, Kaplan D, Cebe P (2007) Effect of water on the thermal properties of silk fibroin. Thermochim Acta 461(1–2):137–144

    Article  CAS  Google Scholar 

  44. Pyda M, Hu X, Cebe P (2008) Heat capacity of silk fibroin based on the vibrational motion of poly (amino acid) s in the presence and absence of water. Macromolecules 41(13):4786–4793

    Article  CAS  Google Scholar 

  45. Ojovan MI, Lee WE (2005) Immobilisation of radioactive waste in glass. An Intro Nucl Waste Immobilisation 2:245–282

    Google Scholar 

  46. Cao H, Wang C, Che J, Luo Z, Wang L, Xiao L, Wang J, Hu T (2019) Effect of flow state of pure aluminum and A380 alloy on porosity of high pressure die castings. Materials 12(24):4219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ren S, Liu J, Guo A, Zang W, Geng H, Tao X, Du H (2016) Mechanical properties and thermal conductivity of a temperature resistance hollow glass microspheres/borosilicate glass buoyance material. Mater Sci Eng, A 674:604–614

    Article  CAS  Google Scholar 

  48. Mhareb MHA, Alajerami YSM, Sayyed MI, Dwaikat N, Alqahtani M, Alshahri F, Saleh N, Alonizan N, Ghrib T, Al-Dhafar SI (2020) Radiation shielding, structural, physical, and optical properties for a series of borosilicate glass. J Non-Cryst Solids 550:120360

    Article  CAS  Google Scholar 

  49. Bouras N, Madjoubi MA, Kolli M, Benterki S, Hamidouche M (2009) Thermal and mechanical characterization of borosilicate glass. Phys Procedia 2(3):1135–1140

    Article  CAS  Google Scholar 

  50. Poon C (2022) Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices. J Mech Behav Biomed Mater 126:105024. https://doi.org/10.1016/j.jmbbm.2021.105024

  51. Index R, Sulfoxide D (2001) ‘Density, Viscosity, Refractive Index, and’ 100–101

  52. Khorshid, Sief (2017) Re: what is the Young’s’s (or E-)modulus of water?. Retrieved from: https://www.researchgate.net/post/What-is-the-Young’ss-or-E-modulus-of-water/592c4b5f615e27fafc7e8ff6/citation/download

  53. Galon, Pascal (2015) Re: what is the Young’s’s (or E-)modulus of water?. Retrieved from: https://www.researchgate.net/post/What-is-the-Young’ss-or-E-modulus-of-water/55c12fe16143252d0f8b461f/citation/download

  54. Yener Y, Kakac S (2018) Heat conduction. CRC Press

    Book  Google Scholar 

  55. da Costa Campos LMB (2020) Steady Heat Conduction. Complex Analysis with Applications to Flows and Fields, CRC Press 388:607–634. https://doi.org/10.1201/b13580-44

    Article  Google Scholar 

  56. Zhukovsky KV, Srivastava HM (2017) Analytical solutions for heat diffusion beyond Fourier law. Appl Math Comput 293:423–437

    Google Scholar 

  57. Zhang A, Cheng S, He L, Luo D, Gao D (2004) Determination of thermal conductivity of cryoprotectant solutions and cell suspensions. Cell Preserv Technol 2(2):157–162

    Article  CAS  Google Scholar 

  58. Authelin JR, Rodrigues MA, Tchessalov S, Singh SK, McCoy T, Wang S, Shalaev E (2020) Freezing of biologicals revisited: scale, stability, excipients, and degradation stresses. J Pharm Sci 109(1):44–61

    Article  CAS  PubMed  Google Scholar 

  59. Sterling T, Brodowicz M, Anderson M (2017) High performance computing: modern systems and practices. Morgan Kaufmann, San Francisco, CA

  60. Amestoy P et al (2011) Encyclopedia of parallel computing.  1–15. https://doi.org/10.1007/978-0-387-09766-4

  61. Bit A, Chattopadhyay H (2014) Numerical investigations of pulsatile flow in stenosed artery. Acta Bioeng Biomech 16(4). https://doi.org/10.5277/ABB-00029-2014-05

  62. Wang Q, Huang J, Wang Z, He G, Lei D, Gong J, Wu L (2018) Anisotropic three-dimensional thermal stress modeling and simulation of homoepitaxial AlN single crystal growth by the physical vapor transport method. Cryst Growth Des 18(5):2998–3007

    Article  CAS  Google Scholar 

  63. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(Suppl 4):467–479. https://doi.org/10.1007/s00586-008-0745-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arya R, Singh V, Juyal D, Rawat G (2017) A brief review of polyelectrolyte complex: an update. Indo Am J Pharm Sci 4(4):1026–1033

    CAS  Google Scholar 

  65. Pignatello R (ed.) (2013) Advances in Biomaterials Science and Biomedical Applications. InTech. https://doi.org/10.5772/56420

  66. Johari N, Moroni L, Samadikuchaksaraei A (2020) Tuning the conformation and mechanical properties of silk fibroin hydrogels. Eur Polym J 134(June):109842. https://doi.org/10.1016/j.eurpolymj.2020.109842

    Article  CAS  Google Scholar 

  67. Zhang G, Li C, Wei H, Wang M, Yang Z, Gu Y (2020) Influence of humidity on the elastic modulus and axis compressive strength of concrete in a water environment. Materials (Basel) 13(24):1–14. https://doi.org/10.3390/ma13245696

    Article  CAS  Google Scholar 

  68. Fu C, Wang Y, Guan J, Chen X, Vollrath F, Shao Z (2019) Cryogenic toughness of natural silk and a proposed structure-function relationship. Mater Chem Front 3(11):2507–2513. https://doi.org/10.1039/c9qm00282k

    Article  CAS  Google Scholar 

  69. Yang Y, Chen X, Shao Z et al (2005) Toughness of spider silk at high and low temperatures. Adv Mater 17(1):84–88. https://doi.org/10.1002/adma.200400344

    Article  CAS  Google Scholar 

  70. Plaseied A, Fatemi A (2008) Strain rate and temperature effects on tensile properties and their representation in deformation modeling of vinyl ester polymer. Int J Polym Mater Polym Biomater 57(5):463–479. https://doi.org/10.1080/00914030701729677

    Article  CAS  Google Scholar 

  71. Fukuhara M, Yamauchi I (1993) Temperature dependence of the elastic moduli, dilational and shear internal frictions and acoustic wave velocity for alumina, (Y)TZP and β′-sialon ceramics. J Mater Sci 28(17):4681–4688. https://doi.org/10.1007/BF00414258

    Article  CAS  Google Scholar 

  72. Dos Reis JML (2012) Effect of temperature on the mechanical properties of polymer mortars. Mater Res 15(4):645–649. https://doi.org/10.1590/S1516-14392012005000091

    Article  CAS  Google Scholar 

  73. Sakurada I, Kaji K (1970) Relation between the polymer conformation and the elastic modulus of the crystalline region of polymer. In Journal of Polymer Science Part C: Polymer Symposia (Vol. 31, No. 1, pp. 57–76). New York: Wiley Subscription Services, Inc., A Wiley Company

  74. Jang TH (2017) Cryopreservation and its clinical applications | Elsevier Enhanced Reader. Integr Med Res 6(1):12–18. https://doi.org/10.1016/j.imr.2016.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7(4):499–505

    Article  CAS  PubMed  Google Scholar 

  76. Rödel M, Baumann K, Groll J, Gbureck U (2018) Simultaneous structuring and mineralization of silk fibroin scaffolds. J. Tissue Eng 9. https://doi.org/10.1177/2041731418788509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chirita Mihaila AI, Susi T, Kotakoski J (2019) Influence of temperature on the displacement threshold energy in graphene. Sci Rep 9(1):1–7. https://doi.org/10.1038/s41598-019-49565-4

    Article  CAS  Google Scholar 

  78. Babaei H, McGaughey AJ, Wilmer CE (2017) Effect of pore size and shape on the thermal conductivity of metal-organic frameworks. Chem Sci 8(1):583–589

    Article  CAS  PubMed  Google Scholar 

  79. Kalia S (2010) Cryogenic processing: a study of materials at low temperatures. J Low Temp Phys 158(5–6):934–945

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge DST-BTD [IDP/BDTD/06/2019] and SPARC [SPARC/2018-2019/140/SL (IN)] for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Bit.

Ethics declarations

Human and animal rights

The authors declare that there were no involvement of human participants and animals in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, K., Gupta, S. & Bit, A. Evaluation of heat transfer in porous scaffolds under cryogenic treatment: a numerical study. Med Biol Eng Comput 61, 2543–2559 (2023). https://doi.org/10.1007/s11517-023-02844-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02844-9

Keywords

Navigation