Skip to main content

Advertisement

Log in

A systematic review of the techniques for automatic segmentation of the human upper airway using volumetric images

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The human upper airway is comprised of many anatomical volumes. The obstructions in the upper airway volumes are needed to be diagnosed which requires volumetric segmentation. Manual segmentation is time-consuming and requires expertise in the field. Automatic segmentation provides reliable results and also saves time and effort for the expert. The objective of this study is to systematically review the literature to study various techniques used for the automatic segmentation of the human upper airway regions in volumetric images. PRISMA guidelines were followed to conduct the systematic review. Four online databases Scopus, Google Scholar, PubMed, and JURN were used for the searching of the relevant papers. The relevant papers were shortlisted using inclusion and exclusion eligibility criteria. Three review questions were made and explored to find their answers. The best technique among all the literature studies based on the Dice coefficient and precision was identified and justified through the analysis. This systematic review provides insight to the researchers so that they shall be able to overcome the prominent issues in the field identified from the literature. The outcome of the review is based on several parameters, e.g., accuracy, techniques, challenges, datasets, and segmentation of different sub-regions.

Graphical Abstract

Flowchart of the search process as per PRISMA guidelines along with inclusion and exclusion criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tu J, Inthavong K, Ahmadi G (2013) The human respiratory system Springer, Dordrecht. Biol Med Phys, Biomed Eng. https://doi.org/10.1007/978-94-007-4488-2_2

    Article  Google Scholar 

  2. Abramson Z, Susarla SM, Lawler M, Bouchard C, Troulis M, Kaban LB (2011) Three-dimensional computed tomographic airway analysis of patients with obstructive sleep apnea treated by maxillomandibular advancement. J Oral Maxillofac Surg 69:677–686. https://doi.org/10.1016/j.joms.2010.11.037

    Article  Google Scholar 

  3. Luepker RV, Lakshminarayan K (2011) Cardiovascular and cerebrovascular diseases, in: Roger Detels, Robert Beaglehole, Mary Ann Lansang, a., Gulliford, M. (Eds.), Oxford textbook of public health (5 ed.). Oxford University Press, United Kingdom https://doi.org/10.1093/med/9780199218707.003.0059

  4. Neelapu BC, Kharbanda OP, Sardana HK, Balachandran R, Sardana V, Kapoor P, Gupta A, Vasamsetti S (2017) Craniofacial and upper airway morphology in adult obstructive sleep apnea patients: a systematic review and meta-analysis of cephalometric studies. Sleep Med Rev 31:79–90. https://doi.org/10.1016/j.smrv.2016.01.007

    Article  PubMed  Google Scholar 

  5. Eapen MS, Myers S, Walters EH, Sohal SS (2017) Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert Rev Respir Med 11:827–839. https://doi.org/10.1080/17476348.2017.1360769

    Article  CAS  PubMed  Google Scholar 

  6. SleepApnea (2020) https://my.clevelandclinic.org/health/diseases/8718-sleep-apnea. 3 March 2020

  7. Sorino C, Negri S, Spanevello A, Visca D, Scichilone N (2020) Inhalation therapy devices for the treatment of obstructive lung diseases: the history of inhalers towards the ideal inhaler. Eur J Intern Med 75:15–18. https://doi.org/10.1016/j.ejim.2020.02.023

    Article  CAS  PubMed  Google Scholar 

  8. Kabaliuk N, Nejati A, Loch C, Schwass D, Cater JE, Jermy MC (2017) Strategies for segmenting the upper airway in cone-beam computed tomography (CBCT) data. Open J MedImaging 07:196–219. https://doi.org/10.4236/ojmi.2017.74019

    Article  Google Scholar 

  9. Tu JY, Inthavong K, Ahmadi G (2013) Computational fluid and particle dynamics in the human respiratory system. Springer, Netherlands. https://doi.org/10.1007/978-94-007-4488-2

    Book  Google Scholar 

  10. Omer A, Yousef M, Mohammed A, Omer, Zidan M, Abbas W (2020) Volumetric analysis of the paranasal sinuses using CT among chronic sinusitis conditions. Int J Sci Res (IJSR) 9. https://doi.org/10.21275/SR20927154620

  11. Bui NL, Ong SH, Foong KW (2015) Automatic segmentation of the nasal cavity and paranasal sinuses from cone-beam CT images. Int J Comput Assist Radiol Surg 10:1269–1277. https://doi.org/10.1007/s11548-014-1134-5

    Article  PubMed  Google Scholar 

  12. Neelapu BC, Kharbanda OP, Sardana V, Gupta A, Vasamsetti S, Balachandran R, Rana SS, Sardana HK (2017) A pilot study for segmentation of pharyngeal and sino-nasal airway subregions by automatic contour initialization. Int J Comput Assist Radiol Surg 12:1877–1893. https://doi.org/10.1007/s11548-017-1650-1

    Article  PubMed  Google Scholar 

  13. Neelapu BC, Kharbanda OP, Sardana HK, Gupta A, Vasamsetti S, Balachandran R, Rana SS, Sardana V (2017) The reliability of different methods of manual volumetric segmentation of pharyngeal and sinonasal subregions. Oral Surg Oral Med Oral Pathol Oral Radiol 124:577–587. https://doi.org/10.1016/j.oooo.2017.08.020

    Article  PubMed  Google Scholar 

  14. Zheng Z, Liu H, Xu Q, Wu W, Du L, Chen H, Zhang Y, Liu D (2017) Computational fluid dynamics simulation of the upper airway response to large incisor retraction in adult class I bimaxillary protrusion patients. Sci Rep 7:45706. https://doi.org/10.1038/srep45706

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yi B-J, Yoon H-S (2016) Review of computer-aided sinus surgery. Hanyang Medical Reviews 36:248. https://doi.org/10.7599/hmr.2016.36.4.248

    Article  Google Scholar 

  16. Sieroslawska A. Ken Hub, Paranasal sinuses. https://www.kenhub.com/en/library/anatomy/the-paranasal-sinuses. September 30, 2021

  17. Norton NSNFH, Elsevier/Saunders (2012) Netter’s head and neck anatomy for dentistry. http://www.clinicalkey.com/dura/browse/bookChapter/3-s2.0-C20110041741

  18. Gupta A (2019) Current research opportunities of image processing and computer vision. Comput Sci 20:387–410. https://doi.org/10.7494/csci.2019.20.4.3163

    Article  Google Scholar 

  19. Piva A (2013) An overview on image forensics. ISRN Signal Process 2013. https://doi.org/10.1155/2013/496701

  20. Maken P, Gupta A, Gupta MK (2019) A study on various techniques involved in gender prediction system: a comprehensive review. Cybernet Inf Technol 19:51–73. https://doi.org/10.2478/cait-2019-0015

    Article  Google Scholar 

  21. Kang B (2007) A review on image & video processing. Int J Multimed Ubiquit Eng 2:49–64. https://doi.org/10.14257/ijmue.2007.2.2.04

    Article  Google Scholar 

  22. Maken P (2019) An elementary study on various techniques involved in face recognition systems : a review. Int J Sci Res Comput Sci, Eng Inf Technol 519–525. https://doi.org/10.32628/cseit1951116

  23. Maken P, Gupta A (2021) A method for automatic classification of gender based on text- independent handwriting. Multimed Tools Appl 80:24573–24602. https://doi.org/10.1007/s11042-021-10837-9

    Article  Google Scholar 

  24. Pandey M, Gupta A (2021) A systematic review of the automatic kidney segmentation methods in abdominal images. Biocybernetics Biomed Eng. https://doi.org/10.1016/j.bbe.2021.10.006

    Article  Google Scholar 

  25. Tuia D, Camps-Valls G (2009) Recent advances in remote sensing image processing.https://doi.org/10.1109/ICIP.2009.5414281

  26. Kumar M, Shanavas M, Sidappa A, Kiran M (2015) Cone beam computed tomography - know its secrets. J Int Oral Health 7:64–68

    PubMed  PubMed Central  Google Scholar 

  27. Kroese LF, Sneiders D, Kleinrensink GJ, Muysoms F, Lange JF (2018) Comparing different modalities for the diagnosis of incisional hernia: a systematic review. Hernia 22:229–242. https://doi.org/10.1007/s10029-017-1725-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kasban H, El-bendary M, Salama D (2015) A comparative study of medical imaging techniques. Int J Inf Sci Intell Syst 4:37–58

    Google Scholar 

  29. Yang Q, Li N, Zhao Z, Fan X, Chang EIC, Xu Y (2020) MRI cross-modality image-to-image translation. Sci Rep 10:3753. https://doi.org/10.1038/s41598-020-60520-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vaquero JJ, Kinahan P (2015) Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu Rev Biomed Eng 17:385–414. https://doi.org/10.1146/annurev-bioeng-071114-040723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gupta A, Kharbanda OP, Sardana V, Balachandran R, Sardana HK (2015) A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images. Int J Comput Assist Radiol Surg 10:1737–1752. https://doi.org/10.1007/s11548-015-1173-6

    Article  PubMed  Google Scholar 

  32. Gupta A, Kharbanda OP, Sardana V, Balachandran R, Sardana HK (2016) Accuracy of 3D cephalometric measurements based on an automatic knowledge-based landmark detection algorithm. Int J Comput Assist Radiol Surg 11:1297–1309. https://doi.org/10.1007/s11548-015-1334-7

    Article  PubMed  Google Scholar 

  33. Gupta A, Sardana H K, Kharbanda O P, Sardana V (2016) Method for automatic detection of anatomical landmarks in volumetric data Council of Scientific and Industrial Research, National Informatics Centre Department of Electronics and Information Technology, US Patent. https://patents.google.com/patent/US20160203604A1/en

  34. Neelapu BC, Kharbanda OP, Sardana V, Gupta A, Vasamsetti S, Balachandran R, Sardana HK (2018) Automatic localization of three-dimensional cephalometric landmarks on CBCT images by extracting symmetry features of the skull. Dentomaxillofac Radiol 47:1–12. https://doi.org/10.1259/dmfr.20170054

    Article  Google Scholar 

  35. Gupta A, Kharbanda O, Balachandran R, Sardana V, Kalra S, Chaurasia S, Sardana H (2017) Precision of manual landmark identification between as-received and oriented volume-rendered cone-beam computed tomography images. Am J Orthod Dentofac Orthop 151:118–131. https://doi.org/10.1016/j.ajodo.2016.06.027

    Article  Google Scholar 

  36. Gupta A (2022) RegCal: registration-based calibration method to perform linear measurements on PA (posteroanterior) cephalogram- a pilot study. Multimed Tools Appl. https://doi.org/10.1007/s11042-021-11609-1

    Article  PubMed  PubMed Central  Google Scholar 

  37. Neelapu BC, Kumar H, Sardana, Kharbanda OP, Sardana V, Gupta A, Vasamsetti S (n.d.) Method and system for automatic volumetric-segmentation of human upper respiratory tract. COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH (IN), US Patent. https://patents.google.com/patent/US20190066303A1/en

  38. Guijarro-Martinez R, Swennen GR (2011) Cone-beam computerized tomography imaging and analysis of the upper airway: a systematic review of the literature. Int J Oral Maxillofac Surg 40:1227–1237. https://doi.org/10.1016/j.ijom.2011.06.017

    Article  CAS  PubMed  Google Scholar 

  39. Alsufyani NA, Flores-Mir C, Major PW (2012) Three-dimensional segmentation of the upper airway using cone beam CT: a systematic review. Dentomaxillofac Radiol 41:276–284. https://doi.org/10.1259/dmfr/79433138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. El Khateeb S (2020) Three-dimensional image segmentation of upper airway by cone beam CT: a review of literature. Egypt Dental J 66:1527–1535. https://doi.org/10.21608/edj.2020.25972.1074

    Article  Google Scholar 

  41. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hrobjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 10:89. https://doi.org/10.1186/s13643-021-01626-4

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dastidar P, Heinonen T, Numminen J, Rautiainen M, Laasonen E (1999) Semi-automatic segmentation of computed tomographic images in volumetric estimation of nasal airway. Eur Arch Oto-Rhino-Laryngology: Off J Eur Federation Oto-Rhino-Laryngological Soc (EUFOS): Affiliated German Soc Oto-Rhino-Laryngology-Head Neck Surg 256:192–198. https://doi.org/10.1007/s004050050138

  43. Iwamoto Y, Xiong K, Kitamura T, Han XH, Matsushiro N, Nishimura H, Chen YW (2019) Automatic segmentation of the paranasal sinus from computer tomography images using a probabilistic atlas and a fully convolutional network, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2789–2792 https://doi.org/10.1109/EMBC.2019.8856703

  44. Igbinosa IE (2014) Automated Tool For The Extraction Of Healthy Sinus Area. Int J Eng Appl Sci 4:17–28

    Google Scholar 

  45. Deng Z, Wang B, Zhu Z (2020) BE-FNet: 3D bounding box estimation feature pyramid network for accurate and efficient maxillary sinus segmentation. Math Probl Eng 2020:1–16. https://doi.org/10.1155/2020/5689301

    Article  Google Scholar 

  46. Xu J, Wang S, Zhou Z, Liu J, Jiang X, Chen X (2020) Automatic CT image segmentation of maxillary sinus based on VGG network and improved V-Net. Int J Comput Assist Radiol Surg 15:1457–1465. https://doi.org/10.1007/s11548-020-02228-6

    Article  PubMed  Google Scholar 

  47. Milletari F, Navab N, Ahmadi S-AJFICoDV (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. 565–571. https://doi.org/10.1109/3DV.2016.79

  48. Liu M, Luo H, Tan Y, Wang X, Chen W (2018) Improved V-Net based image segmentation for 3D neuron reconstruction, 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 443–448 https://doi.org/10.1109/BIBM.2018.8621126

  49. Kuo C-F J, Leu Y-S, Hu D-J, Huang C-C, Siao J-J, Leon K B P, (2020) Application of intelligent automatic segmentation and 3D reconstruction of inferior turbinate and maxillary sinus from computed tomography and analyze the relationship between volume and nasal lesion. Biomed Signal Process Control 57. https://doi.org/10.1016/j.bspc.2019.101660

  50. Li KR, Hsung T-C, Yeung AWK, Bornstein M (2020) On segmentation of maxillary sinus membrane using automatic vertex screening, pp. 108–111 https://doi.org/10.1109/VCIP49819.2020.9301845

  51. Gharieb RR, Gendy G, Abdelfattah A (2016) Image segmentation using fuzzy C-means algorithm incorporating weighted local complement membership and local data distances, 2016 World Symposium on Computer Applications & Research (WSCAR), pp. 6–11 https://doi.org/10.1109/WSCAR.2016.18

  52. Hsung TC, Lo J, Chong MM, Goto TK, Cheung LK (2018) Orbit segmentation by surface reconstruction with automatic sliced vertex screening. IEEE Trans Biomed Eng 65:828–838. https://doi.org/10.1109/TBME.2017.2720184

    Article  PubMed  Google Scholar 

  53. Xiong K, Kitamura T, Iwamoto Y, Han X, Matsushiro N, Nishimura H, Chen Y (2018) Semi-automatic segmentation of paranasal sinus from CT images using fully convolutional networks, 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE), pp. 268–269 https://doi.org/10.1109/GCCE.2018.8574753

  54. Deng Z, Kitamura T, Matsushiro N, Nishimura H, Zhu Z, Xu J, Xiong K, and Chen Y-W (2018) Semi-automatic segmentation of paranasal sinuses from CT images using active contour with group similarity constraintshttps://doi.org/10.1007/978-3-319-59397-5

  55. Park J, Hwang J, Ryu J, Nam I, Kim S-A, Cho B-H, Shin S-H, Lee J-Y (2021) Deep learning based airway segmentation using key point prediction. Appl Sci 11. https://doi.org/10.3390/app11083501

  56. Leonardi R, Lo Giudice A, Farronato M, Ronsivalle V, Allegrini S, Musumeci G, Spampinato C (2021) Fully automatic segmentation of sinonasal cavity and pharyngeal airway based on convolutional neural networks. Am J Orthod Dentofacial Orthop 159:824–835. https://doi.org/10.1016/j.ajodo.2020.05.017

    Article  PubMed  Google Scholar 

  57. Sin C, Akkaya N, Aksoy S, Orhan K, Oz U (2021) A deep learning algorithm proposal to automatic pharyngeal airway detection and segmentation on CBCT images. Orthod Craniofac Res. https://doi.org/10.1111/ocr.12480

    Article  PubMed  Google Scholar 

  58. Zhang C, Bruggink R, Baan F, Bronkhorst E, Maal T, He H, Ongkosuwito EM (2019) A new segmentation algorithm for measuring CBCT images of nasal airway: a pilot study. PeerJ 7:e6246. https://doi.org/10.7717/peerj.6246

    Article  PubMed  PubMed Central  Google Scholar 

  59. Keustermans W, Huysmans T, Schmelzer B, Sijbers J, Dirckx JJ (2019) Matlab((R)) toolbox for semi-automatic segmentation of the human nasal cavity based on active shape modeling. Comput Biol Med 105:27–38. https://doi.org/10.1016/j.compbiomed.2018.12.008

    Article  PubMed  Google Scholar 

  60. Xiong K, Kitamura T, Iwamoto Y, Han X, Matsushiro N, Nishimura H, Chen YJItGCoCE (2018) Semi-automatic segmentation of paranasal sinus from CT images using fully convolutional networks. 268–269

  61. Stratemann S, Huang JC, Maki K, Hatcher D, Miller AJ (2011) Three-dimensional analysis of the airway with cone-beam computed tomography. Am J Orthod Dentofacial Orthop 140:607–615. https://doi.org/10.1016/j.ajodo.2010.12.019

    Article  PubMed  Google Scholar 

  62. Sharma N, Aggarwal LM (2010) Automated medical image segmentation techniques. J Med Phys 35:3–14. https://doi.org/10.4103/0971-6203.58777

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhou S, Wang J, Zhang S, Liang Y, Gong Y (2016) Active contour model based on local and global intensity information for medical image segmentation. Neurocomputing 186:107–118. https://doi.org/10.1016/j.neucom.2015.12.073

    Article  Google Scholar 

  64. Qing C, Liu H, Qian Y, Li J, Duan X, Yang Y-H (2018) Local and global active contour model for image segmentation with intensity inhomogeneity. IEEE Access PP 1–1. https://doi.org/10.1109/ACCESS.2018.2871846

  65. Park J-E, Bae S-H, Choi Y-J, Choi W-C, Kim H-W, Lee U-L (2017) The structural changes of pharyngeal airway contributing to snoring after orthognathic surgery in skeletal class III patients. Maxillofacial Plastic and Reconstructive Surgery 39. https://doi.org/10.1186/s40902-017-0120-6

  66. Kim T-Y, Baik J-S, Park J-Y, Chae H-S, Huh K-H, Choi S-C (2011) Determination of midsagittal plane for evaluation of facial asymmetry using three-dimensional computed tomography. Imaging Sci Dent 41:79–84. https://doi.org/10.5624/isd.2011.41.2.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu Y, Collins R, Rothfus W (2001) Robust midsagittal plane extraction from normal and pathological 3-D neuroradiology images. Med Imaging, IEEE Trans 20:175–192. https://doi.org/10.1109/42.918469

    Article  CAS  Google Scholar 

  68. Mancas M, Gosselin B, Macq B (2006) Segmentation using a region growing thresholdinghttps://doi.org/10.1117/12.587995

  69. Salerno S, Gagliardo C, Vitabile S, La Militello C, Tona G, Giuffre M, Lo Casto A, Midiri M (2014) Semi-automatic volumetric segmentation of the upper airways in patients with pierre robin sequence. Neuroradiol J 27:487–494

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, Wells WM, 3rd, Jolesz FA, Kikinis R (2004) Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 11:178-189.https://doi.org/10.1016/s1076-6332(03)00671-8

  71. Abramson Z, Susarla S, Troulis M, Kaban L (2009) Age-related changes of the upper airway assessed by 3-dimensional computed tomography. J Craniofac Surg 20(Suppl 1):657–663. https://doi.org/10.1097/SCS.0b013e318193d521

    Article  PubMed  Google Scholar 

  72. Ashok M, Gupta A (2021) A systematic review of the techniques for the automatic segmentation of organs-at-risk in thoracic computed tomography images. Arch Comput Methods Eng 28:3245–3267. https://doi.org/10.1007/s11831-020-09497-z

    Article  Google Scholar 

  73. Ashok M, Gupta A (2021) Deep learning-based techniques for the automatic segmentation of organs in thoracic computed tomography images: a comparative study, 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), pp. 198–202 https://doi.org/10.1109/ICAIS50930.2021.9396016

  74. Trivedi M, Gupta A (2021) Automatic monitoring of the growth of plants using deep learning-based leaf segmentation. Int J Appl Sci Eng 18:2. https://doi.org/10.6703/IJASE.202106_18(2).003

  75. Beksi W J, Papanikolopoulos N (2016) 3D region segmentation using topological persistence, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1079–1084 https://doi.org/10.1109/IROS.2016.7759183

  76. Wang X-F, Huang D-S, Xu H (2010) An efficient local Chan-Vese model for image segmentation. Pattern Recogn 43:603–618. https://doi.org/10.1016/j.patcog.2009.08.002

    Article  Google Scholar 

  77. Li L, Ross P, Kruusmaa M (2013) Ultrasound image segmentation by Bhattacharyya distance with Rayleigh distribution. IEEE, 2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). Poznan, Poland, pp 149–153

  78. Marginean R, Andreica A, Diosan L, Bálint Z (2019) Autonomous image segmentation by competitive unsupervised GrowCut, 2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 313–319 https://doi.org/10.1109/SYNASC49474.2019.00051

  79. Ghosh P, Antani SK, Long LR, Thoma GR (2011) Unsupervised grow-cut: cellular automata-based medical image segmentation, 2011 IEEE First International Conference on Healthcare Informatics, Imaging and Systems Biology, pp. 40–47 https://doi.org/10.1109/HISB.2011.44

  80. Liang M, Yueju X, De-yun K, Guoying L, Ke H, Qi-Fu L, Kai W (2011) Litchi image segmentation algorithm based on sparse field level set. Trans Chin Soc Agric Eng 27:345–349

    Google Scholar 

  81. Maynard RL, Downes N (2019) Chapter 10 - Nasal cavity, in: Maynard RL, Downes N (Eds.), Anatomy and histology of the laboratory rat in toxicology and biomedical research. Academic Press, pp. 109–121 https://doi.org/10.1016/B978-0-12-811837-5.00010-1

  82. Huang R, Li A, Bi L, Li C, Young P, King G, Feng DD, Kim J (2016) A locally constrained statistical shape model for robust nasal cavity segmentation in computed tomography, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1334–1337 https://doi.org/10.1109/ISBI.2016.7493513

  83. Trévillot V, Sobral R, Dombre E, Poignet P, Herman B, Crampette L (2013) Innovative endoscopic sino-nasal and anterior skull base robotics. Int J Comput Assist Radiol Surg 8:977–987. https://doi.org/10.1007/s11548-013-0839-1

    Article  PubMed  Google Scholar 

  84. Liu X, Song L, Liu S, Zhang Y (2021) A review of deep-learning-based medical image segmentation methods. Sustainability 13. https://doi.org/10.3390/su13031224

  85. Muto T, Takeda S, Kanazawa M, Yamazaki A, Fujiwara Y, Mizoguchi I (2002) The effect of head posture on the pharyngeal airway space (PAS). Int J Oral Maxillofac Surg 31:579–583. https://doi.org/10.1054/ijom.2002.0279

    Article  CAS  PubMed  Google Scholar 

  86. Sutthiprapaporn P, Tanimoto K, Ohtsuka M, Nagasaki T, Iida Y, Katsumata A (2008) Positional changes of oropharyngeal structures due to gravity in the upright and supine positions. Dentomaxillofac Radiol 37:130–135. https://doi.org/10.1259/dmfr/31005700

    Article  CAS  PubMed  Google Scholar 

  87. Zaitoun NM, Aqel MJ (2015) Survey on image segmentation techniques. Proc Comput Sci 65:797–806. https://doi.org/10.1016/j.procs.2015.09.027

    Article  Google Scholar 

  88. Borole VY, Nimbhore SS, Kawthekar DSS (2015) Image processing techniques for brain tumor detection : a review. Int J Emerg Trends Technol Comput Sci (IJETTCS) 4:28–32. https://doi.org/10.2749/IJETTCS.361.944

    Article  Google Scholar 

  89. Guo Y (2010) Computer-aided detection of breast cancer using ultrasound images, Computer Science. Utah State University, Logan, UT, ALL GRADUATE THESES AND DISSERTATIONS, pp. 2–131 https://doi.org/10.26076/7f62-c23f

  90. Wang Z, Liu Y-J (2017) Active contour model by combining edge and region information discrete dynamic systems. Adv Mech Eng 9:168781401769294. https://doi.org/10.1177/1687814017692947

    Article  Google Scholar 

  91. Bernal J, Kushibar K, Asfaw DS, Valverde S, Oliver A, Martí R, Lladó X (2019) Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif Intell Med 95:64–81. https://doi.org/10.1016/j.artmed.2018.08.008

    Article  PubMed  Google Scholar 

  92. Jena M, Mishra S, Mishra D (2018) A survey on applications of machine learning techniques for medical image segmentation. Int J Eng Technol 7:4489–4495. https://doi.org/10.14419/ijet.v7i4.19005

    Article  Google Scholar 

  93. Chaudhuri D, Agrawal A (2010) Split-and-merge procedure for image segmentation using bimodality detection approach. Defence Sci J 60:290–301. https://doi.org/10.14429/dsj.60.356

    Article  Google Scholar 

  94. Bach Cuadra M, Duay V, JP T (2015) Atlas-based segmentation, Paragios N, Duncan J, Ayache N (eds) Handbook of biomedical imaging. Springer, Boston, MA, pp. 221–244 https://doi.org/10.1007/978-0-387-09749-7_12

  95. Yushkevich PA (2014) Image post-processing and analysis diagnostic radiology physics: a handbook for teachers and students. IAEA, International Atomic Energy Agency (IAEA), pp 423–456

    Google Scholar 

  96. Nigretto J-C, medium.com (2021) Advantages of U-Net for image segmentation. https://jean-charles-nigretto.medium.com/advantages-of-u-net-for-image-segmentation-8ce869d28b4d. Accessed 22 Jan 2021

  97. Pinheiro GR, Voltoline R, Bento M, Rittner L (2019) V-Net and U-Net for ischemic stroke lesion segmentation in a small dataset of perfusion data. Springer International Publishing, Cham, pp 301–309

    Google Scholar 

  98. Donnelly LF, Surdulescu V, Chini BA, Casper KA, Poe SA, Amin RS (2003) Upper airway motion depicted at cine MR imaging performed during sleep: comparison between young patients with and those without obstructive sleep apnea. Radiology 227:239–245. https://doi.org/10.1148/radiol.2271020198

    Article  PubMed  Google Scholar 

  99. Guilleminault C, Hill MH, Simmons FB, Powell N, Riley R, Stoohs R (1997) Passive constriction of the upper airway during central apneas: fiberoptic and EMG investigations. Respir Physiol 108:11–22. https://doi.org/10.1016/s0034-5687(97)02529-2

    Article  CAS  PubMed  Google Scholar 

  100. Armstrong JJ, Leigh MS, Sampson DD, Walsh JH, Hillman DR, Eastwood PR (2006) Quantitative upper airway imaging with anatomic optical coherence tomography. Am J Respir Crit Care Med 173:226–233. https://doi.org/10.1164/rccm.200507-1148OC

    Article  PubMed  Google Scholar 

  101. Souadih K, Belaid A, Ben Salem D, Conze PH (2020) Automatic forensic identification using 3D sphenoid sinus segmentation and deep characterization. Med Biol Eng Comput 58:291–306. https://doi.org/10.1007/s11517-019-02050-6

    Article  PubMed  Google Scholar 

  102. Sinha A, Leonard S, Reiter A, Ishii M, Taylor RH, Hager GD, (2016) Automatic segmentation and statistical shape modeling of the paranasal sinuses to estimate natural variations. Proc SPIE Int Soc Opt Eng 9784. https://doi.org/10.1117/12.2217337

  103. Tsolakis IA, Kolokitha O-E, Papadopoulou E, Tsolakis AI, Kilipiris EG, Palomo JM (2022) Artificial intelligence as an aid in CBCT airway analysis: a systematic review. Life- MDPI 12:1894

    Article  Google Scholar 

  104. Shujaat S, Jazil O, Willems H, Van Gerven A, Shaheen E, Politis C, Jacobs R (2021) Automatic segmentation of the pharyngeal airway space with convolutional neural network. J Dent 111:103705. https://doi.org/10.1016/j.jdent.2021.103705

    Article  CAS  PubMed  Google Scholar 

  105. Cho H-N, Gwon E, Kim K-A, Baek S-H, Kim N, Kim S-J (2022) Accuracy of convolutional neural networks-based automatic segmentation of pharyngeal airway sections according to craniofacial skeletal pattern. Am J Orthod Dentofac Orthop 162:e53–e62. https://doi.org/10.1016/j.ajodo.2022.01.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Gupta.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maken, P., Gupta, A. & Gupta, M.K. A systematic review of the techniques for automatic segmentation of the human upper airway using volumetric images. Med Biol Eng Comput 61, 1901–1927 (2023). https://doi.org/10.1007/s11517-023-02842-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02842-x

Keywords

Navigation