Skip to main content
Log in

A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to assess muscle dysfunction due to chronic obstructive pulmonary disease (COPD). Older adults (65 years or older) with and without COPD and healthy young control participants (18 to 30 years) were recruited. First, we evaluated the musculoskeletal arm model using electromyography (EMG) data. Second, we compared the computational musculoskeletal arm model parameters along with EMG-based time lag and kinematics parameters (such as elbow angular velocity) between participants. The developed model showed strong cross-correlation with EMG data for biceps (0.905, 0.915) and moderate cross-correlation for triceps (0.717, 0.672) within both fast and normal pace tasks among older adults with COPD. We also showed that parameters obtained from the musculoskeletal model were significantly different between COPD and healthy participants. On average, higher effect sizes were achieved for parameters obtained from the musculoskeletal model, especially for co-contraction measures (effect size = 1.650 ± 0.606, p < 0.001), which was the only parameter that showed significant differences between all pairwise comparisons across the three groups. These findings suggest that studying the muscle performance and co-contraction, may provide better information regarding neuromuscular deficiencies compared to kinematics data. The presented model has potential for assessing functional capacity and studying longitudinal outcomes in COPD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Health NIO (2012) Morbidity & mortality: 2012 chart book on cardiovascular, lung, and blood diseases. Retrieved May, 15

  2. Niewoehner DE, D Collins, and MLErbland Veterans Affairs Cooperative Study Group (2000) Relation of FEV1 to clinical outcomes during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 161(4):1201–1205

    Article  Google Scholar 

  3. Pinto-Plata V et al (2004) The 6-min walk distance: change over time and value as a predictor of survival in severe COPD. Eur Respir J 23(1):28–33

    Article  CAS  PubMed  Google Scholar 

  4. Maltais F et al (2014) An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 189(9):e15–e62

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carter R et al (2003) 6-minute walk work for assessment of functional capacity in patients with COPD. Chest 123(5):1408–1415

    Article  PubMed  Google Scholar 

  6. Sciurba F et al (2003) Six-minute walk distance in chronic obstructive pulmonary disease: reproducibility and effect of walking course layout and length. Am J Respir Crit Care Med 167(11):1522–1527

    Article  PubMed  Google Scholar 

  7. Spruit MA et al (2012) Predicting outcomes from 6-minute walk distance in chronic obstructive pulmonary disease. J Am Med Dir Assoc 13(3):291–297

    Article  PubMed  Google Scholar 

  8. Mohler J et al (2013) In-home activity monitoring in frail elders: a new measure of function. in JOURNAL OF THE AMERICAN GERIATRICS SOCIETY. WILEY-BLACKWELL 111 RIVER ST, HOBOKEN 07030–5774, NJ USA

  9. Najafi B, MJ Mohler, and N Toosizadeh (2020) Method and system to identify frailty using body movement. Google Patents

  10. Toosizadeh N, Mohler J, Najafi B (2015) Assessing upper extremity motion: an innovative method to identify frailty. J Am Geriatr Soc 63(6):1181–1186

    Article  PubMed  PubMed Central  Google Scholar 

  11. Toosizadeh N et al (2017) Assessing upper-extremity motion: An innovative method to quantify functional capacity in patients with chronic obstructive pulmonary disease. PLoS ONE 12(2):e0172766

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ehsani H et al (2019) Upper-extremity function prospectively predicts adverse discharge and all-cause COPD readmissions: a pilot study. Int J Chron Obstruct Pulmon Dis 14:39

    Article  PubMed  Google Scholar 

  13. Bernard S et al (1998) Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158(2):629–634

    Article  CAS  PubMed  Google Scholar 

  14. Gosselink R, Troosters T, Decramer M (2000) Distribution of muscle weakness in patients with stable chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev 20(6):353–360

    Article  CAS  Google Scholar 

  15. Morris ME (2000) Movement disorders in people with Parkinson disease: a model for physical therapy. Phys Ther 80(6):578–597

    Article  CAS  PubMed  Google Scholar 

  16. Shao Q et al (2009) An EMG-driven model to estimate muscle forces and joint moments in stroke patients. Comput Biol Med 39(12):1083–1088

    Article  PubMed  PubMed Central  Google Scholar 

  17. van Dieën JH, Cholewicki J, Radebold A (2003) Trunk muscle recruitment patterns in patients with low back pain enhance the stability of the lumbar spine. Spine 28(8):834–841

    Article  PubMed  Google Scholar 

  18. Chae J et al (2002) Muscle weakness and cocontraction in upper limb hemiparesis: relationship to motor impairment and physical disability. Neurorehabil Neural Repair 16(3):241–248

    Article  PubMed  Google Scholar 

  19. Hill AV (1938) The heat of shortening and the dynamic constants of muscle Proceedings of the Royal Society of London. Ser B-Biol Sci 126(843):136–195

    Google Scholar 

  20. Huxley A (1974) Muscular contraction. J Physiol 243(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Winters JM, Stark L (1987) Muscle models: what is gained and what is lost by varying model complexity. Biol Cybern 55(6):403–420

    Article  CAS  PubMed  Google Scholar 

  22. Nikooyan AA et al (2011) Development of a comprehensive musculoskeletal model of the shoulder and elbow. Med Biol Eng Compu 49(12):1425–1435

    Article  Google Scholar 

  23. Blana D et al (2008) A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems. J Biomech 41(8):1714–1721

    Article  PubMed  PubMed Central  Google Scholar 

  24. Raikova R, Aladjov H (2003) The influence of the way the muscle force is modeled on the predicted results obtained by solving indeterminate problems for a fast elbow flexion. Comput Methods Biomech Biomed Engin 6(3):181–196

    Article  PubMed  Google Scholar 

  25. Davies L, Angus R, Calverley P (1999) Oral corticosteroids in patients admitted to hospital with exacerbations of chronic obstructive pulmonary disease: a prospective randomised controlled trial. The Lancet 354(9177):456–460

    Article  CAS  Google Scholar 

  26. Abdool-Gaffar M et al (2011) Guideline for the management of chronic obstructive pulmonary disease: update. SAMJ: South Afr Med J 101(1):63–73

    CAS  Google Scholar 

  27. Travis WD et al (2013) An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188(6):733–748

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hu X et al (2007) Variation of muscle coactivation patterns in chronic stroke during robot-assisted elbow training. Arch Phys Med Rehabil 88(8):1022–1029

    Article  PubMed  Google Scholar 

  29. Ehsani H et al (2020) Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer’s disease? Comput Biol Med 120:103705

    Article  PubMed  PubMed Central  Google Scholar 

  30. Toosizadeh N et al (2019) Screening older adults for amnestic mild cognitive impairment and early-stage Alzheimer’s disease using upper-extremity dual-tasking. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  31. Toosizadeh N et al (2017) Frailty assessment in older adults using upper-extremity function: index development. BMC Geriatr 17(1):117

    Article  PubMed  PubMed Central  Google Scholar 

  32. Joseph B et al (2017) Upper-extremity function predicts adverse health outcomes among older adults hospitalized for ground-level falls. Gerontol 63(4):299–307

    Article  Google Scholar 

  33. Toosizadeh N et al (2016) Assessing upper-extremity motion: an innovative, objective method to identify frailty in older bed-bound trauma patients. J Am Coll Surg 223(2):240–248

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hermens HJ et al (1999) European recommendations for surface electromyography. Roessingh Res Dev 8(2):13–54

    Google Scholar 

  35. Ives JC, Wigglesworth JK (2003) Sampling rate effects on surface EMG timing and amplitude measures. Clin Biomech 18(6):543–552

    Article  Google Scholar 

  36. Merletti R et al (2002) Effect of age on muscle functions investigated with surface electromyography. Muscle Nerve: Off J Am Assoc Electrodiagnostic Med 25(1):65–76

    Article  Google Scholar 

  37. Ehsani H et al (2019) Efficient embedding of empirically-derived constraints in the ODE formulation of multibody systems: Application to the human body musculoskeletal system. Mech Mach Theory 133:673–690

    Article  Google Scholar 

  38. Pigeon P, Feldman AG (1996) Moment arms and lengths of human upper limb muscles as functions of joint angles. J Biomech 29(10):1365–1370

    Article  CAS  PubMed  Google Scholar 

  39. Bertsekas DP (2014) Constrained optimization and Lagrange multiplier methods. 2014: Academic press

  40. Toosizadeh N, Haghpanahi M (2011) Generating a finite element model of the cervical spine: Estimating muscle forces and internal loads. Scientia Iranica 18(6):1237–1245

    Article  Google Scholar 

  41. Raikova RT (2009) Investigation of the influence of the elbow joint reaction on the predicted muscle forces using different optimization functions. J Musculoskelet Res 12(01):31–43

    Article  Google Scholar 

  42. Holzbaur KR, Murray WM, Delp SL (2005) A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng 33(6):829–840

    Article  PubMed  Google Scholar 

  43. Bean JC, Chaffin DB, Schultz AB (1988) Biomechanical model calculation of muscle contraction forces: a double linear programming method. J Biomech 21(1):59–66

    Article  CAS  PubMed  Google Scholar 

  44. Raikova R (1999) About weight factors in the non-linear objective functions used for solving indeterminate problems in biomechanics. J Biomech 32(7):689–694

    Article  CAS  PubMed  Google Scholar 

  45. Parsa B, H Ehsani, and M Rostami (2013) Analyzing synergistic and antagonistic muscle behavior during elbow planar flexion-extension: entropy-assisted vs. shift-parameter criterion. in 2013 20th Iranian Conference on Biomedical Engineering (ICBME). IEEE

  46. Chang Y-W et al (1999) Optimum length of muscle contraction. Clin Biomech 14(8):537–542

    Article  CAS  Google Scholar 

  47. Suzuki M et al (1997) Trajectory formation of the center-of-mass of the arm during reaching movements. Neurosci 76(2):597–610

    Article  CAS  Google Scholar 

  48. Veeger H et al (1997) Parameters for modeling the upper extremity. J Biomech 30(6):647–652

    Article  CAS  PubMed  Google Scholar 

  49. An K-N et al (1981) Muscles across the elbow joint: a biomechanical analysis. J Biomech 14(10):659–669

    Article  CAS  PubMed  Google Scholar 

  50. Hodges PW, Bui BH (1996) A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalogr Clin Neurophysiol 101(6):511–519

    CAS  PubMed  Google Scholar 

  51. Toosizadeh N et al (2017) Frailty assessment in older adults using upper-extremity function: index development. BMC Geriatr 17(1):1–7

    Article  Google Scholar 

  52. Schaap LA, Koster A, Visser M (2013) Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol Rev 35(1):51–65

    Article  PubMed  Google Scholar 

  53. Buchanan TS, Shreeve DA (1996) An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks. J Biomech Eng 118(4):565–574

    Article  CAS  PubMed  Google Scholar 

  54. Challis JH, Kerwin D (1993) An analytical examination of muscle force estimations using optimization techniques. Proc Inst Mech Eng [H] 207(3):139–148

    Article  CAS  Google Scholar 

  55. Bl Prilutsky (2000) Coordination of two-and one-joint muscles: functional consequences and implications for motor control. Motor control 4(1):1–44

    Article  Google Scholar 

  56. Jiang Z, and GA Mirka (2007) Application of an entropy-assisted optimization model in prediction of agonist and antagonist muscle forces. in Proceedings of the Human Factors and Ergonomics Society Annual Meeting. SAGE Publications Sage CA: Los Angeles, CA

  57. Lai AK, Arnold AS, Wakeling JM (2017) Why are antagonist muscles co-activated in my simulation? A musculoskeletal model for analysing human locomotor tasks. Ann Biomed Eng 45(12):2762–2774

    Article  PubMed  PubMed Central  Google Scholar 

  58. Roh J et al (2013) Alterations in upper limb muscle synergy structure in chronic stroke survivors. J Neurophysiol 109(3):768–781

    Article  PubMed  Google Scholar 

  59. Inouye JM, Valero-Cuevas FJ (2016) Muscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumption. PLoS Comput Biol 12(2):e1004737

    Article  PubMed  PubMed Central  Google Scholar 

  60. Scovil CY, Ronsky JL (2006) Sensitivity of a Hill-based muscle model to perturbations in model parameters. J Biomech 39(11):2055–2063

    Article  PubMed  Google Scholar 

  61. Wüst RC, Degens H (2007) Factors contributing to muscle wasting and dysfunction in COPD patients. Int J Chron Obstruct Pulmon Dis 2(3):289

    PubMed  PubMed Central  Google Scholar 

  62. Rennie M et al (1983) Depressed protein synthesis is the dominant characteristic of muscle wasting and cachexia. Clin Physiol 3(5):387–398

    Article  CAS  PubMed  Google Scholar 

  63. Casaburi R et al (2004) Effects of testosterone and resistance training in men with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 170(8):870–878

    Article  PubMed  Google Scholar 

  64. Van Vliet M et al (2005) Hypogonadism, quadriceps weakness, and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 172(9):1105–1111

    Article  PubMed  Google Scholar 

  65. Busse M, Wiles CM, Van Deursen RWM (2005) Muscle co-activation in neurological conditions. Physical therapy reviews 10(4):247–253

    Article  Google Scholar 

  66. Hirokawa S et al (1991) Muscular co-contraction and control of knee stability. J Electromyogr Kinesiol 1(3):199–208

    Article  CAS  PubMed  Google Scholar 

  67. Hortobágyi T, DeVita P (2006) Mechanisms responsible for the age-associated increase in coactivation of antagonist muscles. Exerc Sport Sci Rev 34(1):29–35

    Article  PubMed  Google Scholar 

  68. Potvin J, O’brien P (1998) Trunk muscle co-contraction increases during fatiguing, isometric, lateral bend exertions: possible implications for spine stability. Spine 23(7):774–780

    Article  CAS  PubMed  Google Scholar 

  69. Rosa MCN et al (2014) Lower limb co-contraction during walking in subjects with stroke: a systematic review. J Electromyogr Kinesiol 24(1):1–10

    Article  PubMed  Google Scholar 

  70. Souissi H et al (2017) Co-contraction around the knee and the ankle joints during post-stroke gait. Eur J Phys Rehabil Med 54(3):380–387

    PubMed  Google Scholar 

  71. Shah S et al (2013) Upper limb muscle strength & endurance in chronic obstructive pulmonary disease. Indian J Med Res 138(4):492

    PubMed  PubMed Central  Google Scholar 

  72. Clark C et al (2000) Skeletal muscle strength and endurance in patients with mild COPD and the effects of weight training. Eur Respir J 15(1):92–97

    Article  CAS  PubMed  Google Scholar 

  73. Zattara-Hartmann MC et al (1995) Maximal force and endurance to fatigue of respiratory and skeletal muscles in chronic hypoxemic patients: the effects of oxygen breathing. Muscle Nerve: Off J Am Assoc Electrodiagnostic Med 18(5):495–502

    Article  CAS  Google Scholar 

  74. Jakobsson P, Jorfeldt L, Brundin A (1990) Skeletal muscle metabolites and fibre types in patients with advanced chronic obstructive pulmonary disease (COPD), with and without chronic respiratory failure. Eur Respir J 3(2):192–196

    Article  CAS  PubMed  Google Scholar 

  75. Piazzesi G, Lombardi V (1995) A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys J 68(5):1966–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Micera S, Sabatini AM, Dario P (1998) An algorithm for detecting the onset of muscle contraction by EMG signal processing. Med Eng Phys 20(3):211–215

    Article  CAS  PubMed  Google Scholar 

  77. Polkey MI et al (2013) Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization. Am J Respir Crit Care Med 187(4):382–386

    Article  CAS  PubMed  Google Scholar 

  78. Engelen M et al (1994) Nutritional depletion in relation to respiratory and peripheral skeletal muscle function in out-patients with COPD. Eur Respir J 7(10):1793–1797

    Article  CAS  PubMed  Google Scholar 

  79. Dolmage TE et al (1993) The ventilatory response to arm elevation of patients with chronic obstructive pulmonary disease. Chest 104(4):1097–1100

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by an award from the National Institute of Aging (NIA) (award number: 5R21AG059202-02). The findings of this manuscript are those of the authors and do not necessarily represent the official views of NIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Toosizadeh.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghari, M., Peña, M., Ruiz, M. et al. A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease. Med Biol Eng Comput 61, 2241–2254 (2023). https://doi.org/10.1007/s11517-023-02823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02823-0

Keywords

Navigation