Skip to main content
Log in

An application of deep dual convolutional neural network for enhanced medical image denoising

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This work investigates the medical image denoising (MID) application of the dual denoising network (DudeNet) model for chest X-ray (CXR). The DudeNet model comprises four components: a feature extraction block with a sparse mechanism, an enhancement block, a compression block, and a reconstruction block. The developed model uses residual learning to boost denoising performance and batch normalization to accelerate the training process. The name proposed for this model is dual convolutional medical image-enhanced denoising network (DCMIEDNet). The peak signal-to-noise ratio (PSNR) and structure similarity index measurement (SSIM) are used to assess the MID performance for five different additive white Gaussian noise (AWGN) levels of σ = 15, 25, 40, 50, and 60 in CXR images. Presented investigations revealed that the PSNR and SSIM offered by DCMIEDNet are better than several popular state-of-the-art models such as block matching and 3D filtering, denoising convolutional neural network, and feature-guided denoising convolutional neural network. In addition, it is also superior to the recently reported MID models like deep convolutional neural network with residual learning, real-valued medical image denoising network, and complex-valued medical image denoising network. Therefore, based on the presented experiments, it is concluded that applying the DudeNet methodology for DCMIEDNet promises to be quite helpful for physicians.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goyal B, Dogra A, Agrawal S, Sohi BS (2018) Noise issues prevailing in various types of medical images. Biomed Pharmacol J 11:1227–1237

    Article  Google Scholar 

  2. Ravishankar A, Anusha S, Akshatha HK, Raj A, Jahnavi S, Madhura J (2017) A survey on noise reduction techniques in medical images. In: Int Conf Electron, Commun Aerosp Technol (ICECA), Inst Electr Electron Eng Inc., 385–389. https://doi.org/10.1109/ICECA.2017.8203711

  3. Turajli´c E, Karahodzic V (2017) An adaptive scheme for X-ray medical image denoising using artificial neural networks and additive white Gaussian noise level estimation in SVD domain. In: IFMBE Proc., Springer Verlag, 36–40. https://doi.org/10.1007/978-981-10-4166-2_7

  4. Yu Y, Acton ST (2002) Speckle reducing anisotropic diffusion. IEEE Trans Image Process 11:1260–1270. https://doi.org/10.1109/TIP.2002.804276

    Article  PubMed  Google Scholar 

  5. Guan F, Ton P, Ge S, Zhao L (2014) Anisotropic diffusion filtering for ultrasound speckle reduction. Sci China Technol Sci 57:607–614. https://doi.org/10.1007/s11431-014-5483-7

    Article  Google Scholar 

  6. Nie X, Unbehauen R (1989) Edge preserving filtering by combining non-linear mean and median filters. In: IEEE Int Symp Circuits Syst 437–440. https://doi.org/10.1109/ISCAS.1989.100384

  7. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proc. IEEE Int Conf Comput Vision https://doi.org/10.1109/iccv.1998.710815

  8. Allan PL, Mcdicken WN (1989) An adaptive weighted median filter for speckle suppression in medical ultrasonic images. In: IEEE Trans Circ Syst https://doi.org/10.1109/31.16577

  9. Mittal D, Kumar V, Saxena SC, Khandelwal N, Kalra N (2010) Enhancement of the ultrasound images by modified anisotropic diffusion method. Med Biol Eng Compu 48:1281–1291. https://doi.org/10.1007/s11517-010-0650-x

    Article  Google Scholar 

  10. Guo Y, Wang Y, Hou T (2011) Speckle filtering of ultrasonic images using a modified non local-based algorithm. Biomed Signal Process Control 6:129–138. https://doi.org/10.1016/j.bspc.2010.10.004

    Article  Google Scholar 

  11. Dolui S, Kuurstra A, Salgado Patarroyo IC, Michailovich OV (2013) A new similarity measure for non-local means filtering of MRI images. J Vis Commun Image Represent 24:1040–1054. https://doi.org/10.1016/j.jvcir.2013.06.011

    Article  Google Scholar 

  12. Buades A, Coll B, Morel J-M (2005) A non-local algorithm for image denoising. Proc IEEE Comput Soc Conf Comput Vision Pattern Recog 2:60–65. https://doi.org/10.1109/CVPR.2005.38

    Article  Google Scholar 

  13. Buades A, Coll B, Morel J-M (2008) Non-local image and movie denoising. In: Int J Comput Vision 76(2)123–139. https://doi.org/10.1007/s11263-007-0052-1

  14. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Non-local sparse models for image restoration. In: IEEE 12th Int Conf Comput Vision 2272–2279. https://doi.org/10.1109/ICCV.2009.5459452

  15. Xu J, Zhang L, Zuo W, Zhang D, Feng X (2015) Patch group based non-local self-similarity prior learning for image denoising. In: Proc. IEEE Int Conf Comput Vision (ICCV) 244–252. https://openaccess.thecvf.com/content_iccv_2015/html/Xu_Patch_Group_Based_ICCV_2015_paper.html. Accessed 18 Mar 2022

  16. Rudin LI, Osher S, Fatemi E (1992) Non-linear total variation-based noise removal algorithms. In: Phys D: Non-linear Phenom 60(1–4):259–268. https://doi.org/10.1016/0167-2789(92)90242-F

  17. Osher S, Burger M, Goldfarb D, Xu J, Yin W (2005) An iterative regularization method for total variation-based image restoration. In: Multiscale Model Simul 4(2):460–489. https://doi.org/10.1137/040605412

  18. Weiss Y, Freeman WT (2007) What makes a good model of natural images? In: IEEE Conf Comput Vision Pattern Recognit 1–8. https://doi.org/10.1109/CVPR.2007.383092

  19. Diwakar M, Kumar M (2016) Edge preservation based CT image denoising using Wiener filtering and thresholding in wavelet domain. In: Fourth Int Conf Parallel Distrib Grid Comput (PDGC) 332–336. https://doi.org/10.1109/PDGC.2016.7913171

  20. Wood JC, Johnson KM (1999) Wavelet packet denoising of magnetic resonance images: Importance of Rician noise at low SNR. In: Magn Reson Med 631–635. https://doi.org/10.1002/(SICI)1522-2594(199903)41:3<631::AID-MRM29>3.0.CO;2-Q

  21. Kim B, Han M, Shim H, Baek J (2019) A performance comparison of convolutional neural network-based image denoising methods: the effect of loss functions on low-dose CT images. Med Phys 46:3906–3923. https://doi.org/10.1002/mp.13713

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26:3142–3155. https://doi.org/10.1109/TIP.2017.2662206

    Article  PubMed  Google Scholar 

  23. Dong G, Ma Y, Basu A (2021) Feature-guided CNN for denoising images from portable ultrasound devices. IEEE Access 9:28272–28281. https://doi.org/10.1109/ACCESS.2021.3059003

    Article  Google Scholar 

  24. Rajeev R, Samath JA, Karthikeyan NK (2019) An intelligent recurrent neural network with long short-term memory (LSTM) based batch normalization for medical image denoising. In: Journal of Medical Systems 43. https://doi.org/10.1007/s10916-019-1371-9

  25. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. In: IEEE Trans Image Process 16(8):2080–2095. https://doi.org/10.1109/TIP.2007.901238

  26. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. In: IEEE Trans Image Process 22(4):1620–1630. https://doi.org/10.1109/TIP.2012.2235847

  27. Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm minimization with application to image denoising. In: Proc. IEEE Conf Comput Vision Pattern Recognit 2862–2869. https://openaccess.thecvf.com/content_cvpr_2014/html/Gu_Weighted_Nuclear_Norm_2014_CVPR_paper.html. Accessed 18 Mar 2022

  28. Jin Y, Jiang X-B, Wei Z-K, Li Y (2019) Chest X-ray image denoising method based on deep convolution neural network. In: IET Image Process 13(11):1970–1978. https://doi.org/10.1049/iet-ipr.2019.0241

  29. Gondara L (2016) Medical image denoising using convolutional denoising autoencoders. In: IEEE Int Conf Data Mining Workshops (ICDMW) 241–246. https://doi.org/10.1109/ICDMW.2016.0041

  30. Lee D, Choi S, Kim HJ (2018) Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography. In: Nucl Inst Methods Phys Res Sect A: Accelerators, Spectrometers, Detectors and Associated Equipment 884:97–104. https://doi.org/10.1016/j.nima.2017.12.050

  31. Mehta J, Majumdar A (2017) Mar) RODEO: robust DE-aliasing autoencoder for real-time medical image reconstruction. Pattern Recogn 63:499–510. https://doi.org/10.1016/j.patcog.2016.09.022

    Article  Google Scholar 

  32. Chen H, Zhang Y, Member IEEE, Kalra MK, Lin F, Chen Y (2017) Low-dose CT with a residual encoder-decoder convolutional neural network. In: IEEE Trans Med Imaging 36(12):2524–2535. https://doi.org/10.1109/TMI.2017.2715284

  33. Kazeminia S, Baur C, Kuijper A, van Ginneken B, Navab N, Albarqouni S, Mukhopadhyay A (2020) GANs for medical image analysis. In: Artif Intell Med 109:101938. https://doi.org/10.1016/j.artmed.2020.101938

  34. Wolterink JM, Leiner T, Viergever MA, Iˇsgum I (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 36:2536–2545. https://doi.org/10.1109/TMI.2017.2708987

    Article  PubMed  Google Scholar 

  35. Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G (2018) Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans Med Imaging 37:1348–1357. https://doi.org/10.1109/TMI.2018.2827462

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nitta T (2002) On the critical points of the complex-valued neural network. In: Proc 9th Int Conf Neural Inf Process (ICONIP’02) 1099–1103. https://doi.org/10.1109/ICONIP.2002.1202792

  37. Guberman N (2016) On complex valued convolutional neural networks. http://arxiv.org/abs/1602.09046

  38. Zhang J, Wu Y (2018) Complex-valued unsupervised convolutional neural networks for sleep stage classification. Comput Methods Programs Biomed 164:181–191. https://doi.org/10.1016/j.cmpb.2018.07.015

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Wu Y (2017) A new method for automatic sleep stage classification. IEEE Trans Biomed Circuits Syst 11:1097–1110. https://doi.org/10.1109/TBCAS.2017.2719631

    Article  PubMed  Google Scholar 

  40. Shubhankar Rawat KPS, Rana VK (2021) A novel complex-valued convolutional neural network for medical image denoising. Biomed Signal Process Control 69:379–391. https://doi.org/10.1016/j.bspc.2021.102859

    Article  Google Scholar 

  41. Tian C, Xu Y, Zuo W (2020) Image denoising using deep CNN with batch renormalization. Neural Netw 121:461–473. https://doi.org/10.1016/j.neunet.2019.08.022

    Article  PubMed  Google Scholar 

  42. Li J, Guo X, Lu G, Zhang B, Xu Y, Wu F, Zhang D (2020) DRPL: deep regression pair learning for multi-focus image fusion. IEEE Trans Image Process 29:4816–4831. https://doi.org/10.1109/TIP.2020.2976190

    Article  Google Scholar 

  43. J. Li, H. Yong, B. Zhang, M. Li, L. Zhang, D. Zhang (2018) A probabilistic hierarchical model for multi-view and multi-feature classification. In: Proc. AAAI Conference on Artificial Intelligence, vol. 32. https://doi.org/10.1609/aaai.v32i1.11611

  44. Tian C, Xu Y, Zuo W, Du B, Lin C-W, Zhang D (2021) Designing and training of a dual CNN for image denoising. In: Knowl-Based Syst 226(6):106949. https://doi.org/10.1016/j.knosys.2021.106949

  45. Kermany D et al (2018) Large dataset of labeled optical coherence tomography (OCT) and chest x-ray images. In: Mendeley Data v3. https://doi.org/10.17632/rscbjbr9sj

  46. Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, Dong J, Prasadha MK, Pei J, Ting M, Zhu J, Li C, Hewett S, Dong J, Ziyar I, Shi A, Zhang R, Zheng L, Hou R, Shi W, Fu X, Duan Y, Huu VAN, Wen C, Zhang ED, Zhang CL, Li O, Wang X, Singer MA, Sun X, Xu J, Tafreshi A, Lewis MA, Xia H, Zhang K (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. In: Cell 172(5):1122–1131. https://doi.org/10.1016/j.cell.2018.02.010

  47. Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series, with engineering applications. In: MIT Press, Cambridge. https://val.serc.iisc.ernet.in/vgokoh2ztxug/05-stanton-mueller/1614275173-extrapolation-interpolation-and-smoothing-of-sta-ex.pdf. Accessed 18 Mar 2022

  48. Yang GZ, Burger P, Firmin DN, Underwood SR (1996) Structure adaptive anisotropic image filtering. In: Image Vision Comput 14(2):135–145. https://doi.org/10.1016/0262-8856(95)01047-5

  49. Bouboulis P, Slavakis K, Theodoridis S (2010) Adaptive kernel-based image denoising employing semi-parametric regularization. In: IEEE Trans Image Process 19(6):1465–1479. https://doi.org/10.1109/TIP.2010.2042995

  50. Al-Ameen Z, Al Ameen S, Sulong G (2015) Latest methods of image enhancement and restoration for computed tomography: a concise review. In: Appl Med Inf 36(1):1–12. https://ami.info.umfcluj.ro/index.php/AMI/article/view/510. Accessed 18 Mar 2022

  51. Benesty J, Chen JD, Huang YT (2010) Study of the widely linear Wiener filter for noise reduction. In: IEEE international conference on acoustics, speech and signal processing, Dallas, TX, USA 205–208. https://doi.org/10.1109/ICASSP.2010.5496033

  52. Yang RK, Yin L, Gabbouj M, Astola J, Neuvo Y (1995) Optimal weighted median filtering under structural constraints. In: IEEE Trans Signal Process 43(3):591–604. https://doi.org/10.1109/78.370615

  53. Rudin LI, Osher S, Fatemi E (1992) Non-linear total variation-based noise removal algorithms. In: Paper presented at the eleventh annual international conference of the center for non-linear studies on experimental mathematics: computational issues in non-linear science. Published in: Physica D: Non-linear Phenom 60(1–4):259–268. https://doi.org/10.1016/0167-2789(92)90242-F

  54. Coupe P, Hellier P, Kervrann C, Barillot C (2009) Non-local means-based speckle filtering for ultrasound images. In: IEEE Trans Image Process 18(10):2221–2229. https://doi.org/10.1109/TIP.2009.2024064

  55. Manj´on JV, Carbonell-Caballero J, Lull JJ, García-Martí G, Martí-Bonmatí L, Robles M (2008) MRI denoising using non-local means. In: Med Image Anal 12(4):514–523. https://doi.org/10.1016/j.media.2008.02.004

  56. Dong WS, Zhang L, Shi GM, Li X (2013) Nonlocally centralized sparse representation for image restoration. In: IEEE Trans Image Process 22(4):1620–1630. https://doi.org/10.1109/TIP.2012.2235847

  57. Gu SH, Zhang L, Zuo WM, Feng XC (2014) Weighted nuclear norm minimization with application to image denoising. In: Abstracts of 2014 IEEE conference on computer vision and pattern recognition. IEEE, Columbus, 2862–2869. https://doi.org/10.1109/CVPR.2014.366

  58. Gan Y, Angelini E, Laine A, Hendon C (2015) BM3D-based ultrasound image denoising via brushlet thresholding. In: Proc Int Symp Biomed Imaging 667–670. https://doi.org/10.1109/ISBI.2015.7163961

  59. Zhao T, Hoffman J, McNitt-Gray M, Ruan D (2019) Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics. In: Med Phys 46(1):190–198. https://doi.org/10.1002/mp.13252

  60. Dat. Hyvarinen A, Oja E, Hoyer P, Hurri J (1998) Image feature extraction by sparse coding and independent component analysis. In: Proc 14th Int Conf Pattern Recognit. https://doi.org/10.1109/ICPR.1998.711932

  61. Zhang K, Zuo WM, Zhang L (2018) FFDNet: toward a fast and flexible solution for CNN-based image denoising. In: IEEE Trans Image Process 27(9):4608–4622. https://doi.org/10.1109/TIP.2018.2839891

  62. Goodfellow I et al (2014) Generative adversarial nets. In: Proc Adv Neural Inf Process Syst 2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf. Accessed 18 Mar 2022

  63. Yi X, Babyn P (2018) Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J Digit Imaging 31:655–669. https://doi.org/10.1007/s10278-018-0056-0

    Article  PubMed  PubMed Central  Google Scholar 

  64. Huang Z, Zhang J, Zhang Y, Shan H (2022) DU-GAN: generative adversarial networks with dual-domain U-Net-based discriminators for low-dose CT denoising. In: IEEE Trans Instrumen Meas 71. https://doi.org/10.1109/TIM.2021.3128703

  65. Liu F, Jiao L, Tang X (2019) Task-oriented GAN for PolSAR image classification and clustering. In: IEEE Trans Neural Netw Learn Syst 30(9):2707–2719. https://doi.org/10.1109/TNNLS.2018.2885799

  66. Yi X, Eramian M (2016) Lbp-based segmentation of defocus blur. In: IEEE Trans Image Process 25(4):1626–1638. https://doi.org/10.1109/TIP.2016.2528042

  67. Wang L, Huang W, Zhang S, Liu Z (2018) Complex image denoising framework with CNN-wavelet under concurrency scenarios for informatics systems. In: Concurr Comput. https://doi.org/10.1002/cpe.5059

  68. Jifara W, Jiang F, Rho S, Cheng M, Liu S (2019) Medical image denoising using convolutional neural network: a residual learning approach. J Supercomput 75:704–718. https://doi.org/10.1007/s11227-017-2080-0

    Article  Google Scholar 

  69. Pan J, Liu S, Sun D, Zhang J, Liu Y, Ren J, Li Z, Tang J, Lu H, Tai Y-W et al (2018) Learning dual convolutional neural networks for low-level vision. In: Proc IEEE Conf Comput Vision Pattern Recogn 3070–3079. https://doi.org/10.48550/arXiv.1805.05020

  70. Cao F, Chen B (2019) New architecture of deep recursive convolution networks for super-resolution. Knowl-Based Syst 178:98–110. https://doi.org/10.1016/j.knosys.2019.04.021

    Article  Google Scholar 

  71. Kim H-U, Koh YJ, Kim C-S (2020) Global and local enhancement networks for paired and unpaired image enhancement. In: Eur Conf Comput Vision, Springer, 339–354. https://doi.org/10.1007/978-3-030-58595-2_21

  72. Chen C, Xiong Z, Tian X, Wu F (2018) Deep boosting for image denoising. In: Proc Eur Conf Comput Vision 3–18. https://openaccess.thecvf.com/content_ECCV_2018/papers/Chang_Chen_Deep_Boosting_for_ECCV_2018_paper.pdf. Accessed 18 Mar 2022

  73. Wang C, Li Z, Shi J (2019) Lightweight image super-resolution with adaptive weighted learning network. https://arxiv.org/abs/1904.02358

  74. Hui Z, Wang X, Gao X (2018) Fast and accurate single image super-resolution via information distillation network. In: Proc IEEE Conf Comput Vision Pattern Recogn 723–731. https://doi.org/10.48550/arXiv.1803.09454

  75. Kingma DP, Ba J, Adam (2014) A method for stochastic optimization. https://arxiv.org/abs/1412.6980

  76. Tian C, Xu Y, Li Z, Zuo W, Fei L, Liu H (2020) Attention-guided CNN for image denoising. Neural Netw 124:117–129. https://doi.org/10.1016/j.neunet.2019.12.024

    Article  PubMed  Google Scholar 

  77. Yang M, Zhang L, Yang J, Zhang D (2011) Robust sparse coding for face recognition. In: Proc IEEE Conf Comput Vision Pattern Recogn 625–632. https://doi.org/10.1109/CVPR.2011.5995393

  78. Yu F, Koltun V (2015) Multi-scale context aggregation by dilated convolutions. https://arxiv.org/abs/1511.07122

  79. Salimans T, Kingma DP (2016) Weight normalization: a simple reparameterization to accelerate training of deep neural networks. In: Neural Inf Process Syst (NIPS), Barcelona, Spain, pp 901–909. https://proceedings.neurips.cc/paper/2016/hash/ed265bc903a5a097f61d3ec064d96d2e-Abstract.html. Accessed 18 Mar 2022

  80. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. http://proceedings.mlr.press/v37/ioffe15.pdf

  81. Hui Z, Wang X, Gao X (2018) Fast and accurate single image super-resolution via information distillation network. In: Proc IEEE Conf Comput Visual Pattern Recog 723–731. https://doi.org/10.48550/arXiv.1803.09454

  82. Douillard C, Jézéquel M, Berrou C, Electronique D, Picart A, Didier P, Glavieux A (1995) Iterative correction of intersymbol interference: turbo-equalization. In: Eur Trans Telecom 6(5):507–511. https://doi.org/10.1002/ett.4460060506

  83. Simard PY, Steinkraus D, Platt JC et al (2003) Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR 3. https://www.researchgate.net/profile/John-Platt-2/publication/2880624_Best_Practices_for_Convolutional_Neural_Networks/links/00b49524c79b1afb07000000/Best-Practices-for-Convolutional-Neural-Networks.pdf. Accessed 18 Mar 2022

  84. Zoran D, Weiss Y (2011) From learning models of natural image patches to whole image restoration. In: Proc Int Conf Comput Vision IEEE 479–486. https://doi.org/10.1109/ICCV.2011.6126278

  85. Zhang K, Zuo W, Zhang L (2018) Learning a single convolutional superresolution network for multiple degradations. In: Proc IEEE Conf Comput Vision Pattern Recog 3262–3271. https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Learning_a_Single_CVPR_2018_paper.html. Accessed 18 Mar 2022

  86. Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. In: SIAM J Multiscale Model Simul 4(2):490–530. https://doi.org/10.1137/040616024

  87. Lu J, Yang HM, Shen LX et al (2019) Ultrasound image restoration based on a learned dictionary and a higher-order MRF. In: Comput Math Appl 77(4):991–1009. https://doi.org/10.1016/j.camwa.2018.10.031

  88. Zhang X, Yang W, Hu Y, Liu J (2018) DMCNN: dual-domain multi-scale convolutional neural network for compression artifacts removal. In: 25th IEEE Int Conf Image Process (ICIP) 390–394. https://doi.org/10.1109/ICIP.2018.8451694

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. S. Rana.

Ethics declarations

Ethics approval

The authors state that this study did not involve human or animal participants, data, or biological material.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, A., Rana, K.P.S. & Kumar, V. An application of deep dual convolutional neural network for enhanced medical image denoising. Med Biol Eng Comput 61, 991–1004 (2023). https://doi.org/10.1007/s11517-022-02731-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02731-9

Keywords

Navigation