Skip to main content

Advertisement

Log in

Computational assessment of growth of connective tissues around textured hip stem subjected to daily activities after THA

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Longer-term stability of uncemented femoral stem depends on ossification at bone-implant interface. Although attempts have been made to assess the amount of bone growth using finite element (FE) analysis in combination with a mechanoregulatory algorithm, there has been little research on tissue differentiation patterns on hip stems with proximal macro-textures. The primary goal of this investigation is to qualitatively compare the formation of connective tissues around a femoral implant with/without macro-textures on its proximal surfaces. This study also predicts formation of different tissue phenotypes and their spatio-temporal distribution around a macro-textured femoral stem under routine activities. Results from the study show that non-textured implants (80 to 94%) encourage fibroplasia compared to that in textured implants (71 to 85.38%) under similar routine activity, which might trigger aseptic loosening of implant. Formation of bone was more on medio-lateral sides and towards proximal regions of Gruen zones 2 and 6, which was found to be in line with clinical observations. Fibroplasia was higher under stair climbing (85 to 91%) compared to that under normal walking (71 to 85.38%). This study suggests that stair climbing, although falls under recommended activity, might be detrimental to patient compared to normal walking in the initial rehabilitation period.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cilla M, Borgiani E, Martínez J, Duda GN, Checa S (2017) Machine learning techniques for the optimization of joint replacements: application to a short-stem hip implant. PLoS One 12(9):e0183755. https://doi.org/10.1371/journal.pone.0183755

    Article  CAS  Google Scholar 

  2. Yang L, Kong J, Qiu Z, Shang T, Chen S, Zhao R, Raucci MG, Yang X, Wu Z (2020) Mineralized collagen-modified PMMA cement enhances bone integration and reduces fibrous encapsulation in the treatment of lumbar degenerative disc disease. Regen Biomater 7(2):181–193. https://doi.org/10.1093/rb/rbz044

    Article  CAS  Google Scholar 

  3. Ghosh R, Chanda S, Chakraborty D (2020) The influence of macro-textural designs over implant surface on bone on-growth: a computational mechanobiology based study. Comput Biol Med 124:103937. https://doi.org/10.1016/j.compbiomed.2020.103937

    Article  CAS  Google Scholar 

  4. Tai CL, Lai PL, Lin WD, Tsai TT, Lee YC, Liu MY, Chen LH (2016) Modification of mechanical properties, polymerization temperature, and handling time of polymethylmethacrylate cement for enhancing applicability in vertebroplasty. Biomed Res Int 2016:7901562. https://doi.org/10.1155/2016/7901562

    Article  CAS  Google Scholar 

  5. Puthumanapully PK (2010) Simulation of tissue differentiation in uncemented hip implants based on a mechanoregulatory hypothesis. University of Southampton, School of Engineering Sciences, Doctoral Thesis, pp 221. http://eprints.soton.ac.uk/id/eprint/185117

  6. Chanda S, Mukherjee K, Gupta S, Pratihar DK (2020) A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodelling. Proc Inst Mech Eng H 234(1):118–128. https://doi.org/10.1177/0954411919890998

    Article  Google Scholar 

  7. Ghosh R, Chanda S, Chakraborty D (2021) Qualitative predictions of bone growth over optimally designed macro-textured implant surfaces obtained using NN-GA based machine learning framework. Med Eng Phys 95:64–75. https://doi.org/10.1016/j.medengphy.2021.08.002

    Article  Google Scholar 

  8. Ghosh R, Chanda S, Chakraborty D (2021) Influence of sequential opening/closing of interface gaps and texture density on bone growth over macro-textured implant surfaces using FE based mechanoregulatory algorithm. Comput Methods Biomech Biomed Engin 26:1–15. https://doi.org/10.1080/10255842.2021.1994960

    Article  Google Scholar 

  9. Mathai B, Gupta S (2022) Bone ingrowth around an uncemented femoral implant using mechanoregulatory algorithm: a multiscale finite element analysis. J Biomech Eng. 144(2):021004. https://doi.org/10.1115/1.4052227

    Article  Google Scholar 

  10. Causey GC, Picha GJ, Price J, Pelletier MH, Wang T, Walsh WR (2021) In-Vivo response to a novel pillared surface morphology for osseointegration in an ovine model. J Mech Behav Biomed Mater 119:104462. https://doi.org/10.1016/j.jmbbm.2021.104462

    Article  CAS  Google Scholar 

  11. Bergmann G, Graichen F, Rohlmann A (1995) Is staircase walking a risk for the fixation of hip implants? J Biomech 28(5):535–53. https://doi.org/10.1016/0021-9290(94)00105-d

    Article  CAS  Google Scholar 

  12. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–5. https://doi.org/10.2106/JBJS.F.00222

    Article  Google Scholar 

  13. Bhattacharyya T, Chang D, Meigs JB, Estok DM 2nd, Malchau H (2007) Mortality after periprosthetic fracture of the femur. J Bone Joint Surg Am 89(12):2658–62. https://doi.org/10.2106/JBJS.F.01538

    Article  Google Scholar 

  14. Folgado J, Fernandes PR, Jacobs CR, Pellegrini VD Jr (2009) Influence of femoral stem geometry, material and extent of porous coating on bone ingrowth and atrophy in cementless total hip arthroplasty: an iterative finite element model. Comput Methods Biomech Biomed Engin 12(2):135–45. https://doi.org/10.1080/10255840903081123

    Article  CAS  Google Scholar 

  15. Tarala M, Janssen D, Verdonschot N (2011) Balancing incompatible endoprosthetic design goals: a combined ingrowth and bone remodeling simulation. Med Eng Phys 33(3):374–80. https://doi.org/10.1016/j.medengphy.2010.11.005

    Article  CAS  Google Scholar 

  16. Mukherjee K, Gupta S (2016) Bone ingrowth around porous-coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithm. Biomech Model Mechanobiol 15(2):389–403. https://doi.org/10.1007/s10237-015-0696-7

    Article  Google Scholar 

  17. Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32(3):255–66. https://doi.org/10.1016/s0021-9290(98)00153-5

    Article  CAS  Google Scholar 

  18. Viceconti M, Bellingeri L, Cristofolini L, Toni A (1998) A comparative study on different methods of automatic mesh generation of human femurs. Med Eng Phys 20(1):1–10. https://doi.org/10.1016/s1350-4533(97)00049-0

    Article  CAS  Google Scholar 

  19. Fraldi M, Esposito L, Perrella G, Cutolo A, Cowin SC (2010) Topological optimization in hip prosthesis design. Biomech Model Mechanobiol 9(4):389–402. https://doi.org/10.1007/s10237-009-0183-0

    Article  CAS  Google Scholar 

  20. Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2006) Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: Comparison with in vivo results. J Orthop Res 24(5):898–907. https://doi.org/10.1002/jor.20118

    Article  Google Scholar 

  21. Tarlochan F, Mehboob H, Mehboob A, Chang SH (2018) Influence of functionally graded pores on bone ingrowth in cementless hip prosthesis: a finite element study using mechano-regulatory algorithm. Biomech Model Mechanobiol 17(3):701–716. https://doi.org/10.1007/s10237-017-0987-2

    Article  Google Scholar 

  22. Mehboob H, Ahmad F, Tarlochan F, Mehboob A, Chang SH (2020) A comprehensive analysis of bio-inspired design of femoral stem on primary and secondary stabilities using mechanoregulatory algorithm. Biomech Model Mechanobiol 19(6):2213–2226. https://doi.org/10.1007/s10237-020-01334-3

    Article  Google Scholar 

  23. Mohandes Y, Tahani M, Rouhi G, Tahami M (2021) A mechanobiological approach to find the optimal thickness for the locking compression plate: finite element investigations. Proc Inst Mech Eng H 235(4):408–418. https://doi.org/10.1177/0954411920985757

    Article  Google Scholar 

  24. Taddei F, Schileo E, Helgason B, Cristofolini L, Viceconti M (2007) The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Med Eng Phys 29(9):973–9. https://doi.org/10.1016/j.medengphy.2006.10.014

    Article  Google Scholar 

  25. Heller MO, Bergmann G, Kassi JP, Claes L, Haas NP, Duda GN (2005) Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech 38(5):1155–63. https://doi.org/10.1016/j.jbiomech.2004.05.022

    Article  CAS  Google Scholar 

  26. Pedersen DR, Brand RA, Davy DT (1997) Pelvic muscle and acetabular contact forces during gait. J Biomech 30(9):959–65. https://doi.org/10.1016/s0021-9290(97)00041-9

    Article  CAS  Google Scholar 

  27. Andreykiv A, van Keulen F, Prendergast PJ (2008) Computational mechanobiology to study the effect of surface geometry on peri-implant tissue differentiation. J Biomech Eng 130(5):051015. https://doi.org/10.1115/1.2970057

    Article  CAS  Google Scholar 

  28. Barry FP (2003) Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today 69(3):250–6. https://doi.org/10.1002/bdrc.10021

    Article  CAS  Google Scholar 

  29. Isaksson H, Wilson W, van Donkelaar CC, Huiskes R, Ito K (2006) Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J Biomech 39(8):1507–1516. https://doi.org/10.1016/j.jbiomech.2005.01.037

    Article  Google Scholar 

  30. Puthumanapully PK, Browne M (2011) Tissue differentiation around a short stemmed metaphyseal loading implant employing a modified mechanoregulatory algorithm: a finite element study. J Orthop Res 29(5):787–94. https://doi.org/10.1002/jor.21305

    Article  Google Scholar 

  31. Tan F, Wang C, Yang C, Huang Y, Fan Y (2017) Biomechanical effects of various bone-implant interfaces on the stability of orthodontic miniscrews: a finite element study. J Healthc Eng 2017:7495606. https://doi.org/10.1155/2017/7495606

    Article  Google Scholar 

  32. Giori NJ, Beaupré GS, Carter DR (1993) Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res 11(4):581–91. https://doi.org/10.1002/jor.1100110413

    Article  CAS  Google Scholar 

  33. Nowlan NC, Murphy P, Prendergast PJ (2007) Mechanobiology of embryonic limb development. Ann N Y Acad Sci 1101:389–411. https://doi.org/10.1196/annals.1389.003

    Article  Google Scholar 

  34. Breeland G, Sinkler MA, Menezes RG (2021) Embryology, bone ossification. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing

  35. Stolk J, Verdonschot N, Huiskes R (2002) Stair climbing is more detrimental to the cement in hip replacement than walking. Clin Orthop Relat Res 405:294–305. https://doi.org/10.1097/00003086-200212000-00037

    Article  Google Scholar 

  36. Kuzyk PR, Schemitsch EH (2011) The basic science of peri-implant bone healing. Indian J Orthop. 45(2):108–15. https://doi.org/10.4103/0019-5413.77129

    Article  Google Scholar 

  37. Burke DP, Kelly DJ (2012) Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model. PLoS One 7(7):e40737. https://doi.org/10.1371/journal.pone.0040737

    Article  CAS  Google Scholar 

  38. Liu X, Niebur GL (2008) Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech Model Mechanobiol 7(4):335–44. https://doi.org/10.1007/s10237-007-0100-3

    Article  Google Scholar 

  39. Sennerby L, Thomsen P, Ericson LE (1993) Early tissue response to titanium implants inserted in rabbit cortical bone. J Mater Sci: Mater Med 4:240–250. https://doi.org/10.1007/BF00122275

    Article  CAS  Google Scholar 

  40. Choi JY, Sim JH, Yeo IL (2017) Characteristics of contact and distance osteogenesis around modified implant surfaces in rabbit tibiae. J Periodontal Implant Sci 47(3):182–192. https://doi.org/10.5051/jpis.2017.47.3.182

    Article  CAS  Google Scholar 

  41. Berglundh T, Abrahamsson I, Lang NP, Lindhe J (2003) De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 14(3):251–62. https://doi.org/10.1034/j.1600-0501.2003.00972.x

    Article  Google Scholar 

  42. Carter DR, Beaupré GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355 Suppl:S41-55. https://doi.org/10.1097/00003086-199810001-00006

    Article  Google Scholar 

  43. Santori N, Lucidi M, Santori FS (2006) Proximal load transfer with a stemless uncemented femoral implant. J Orthop Traumatol 7(3):154–160. https://doi.org/10.1007/s10195-006-0141-x

    Article  Google Scholar 

  44. Santori N, Albanese CV, Learmonth ID, Santori FS (2006) Bone preservation with a conservative metaphyseal loading implant. Hip Int 16(Suppl 3):16–21. https://doi.org/10.5301/hip.2009.3327

    Article  Google Scholar 

  45. Fernandes PR, Folgado J, Jacobs C, Pellegrini V (2002) A contact model with ingrowth control for bone remodelling around cementless stems. J Biomech 35(2):167–76. https://doi.org/10.1016/s0021-9290(01)00204-4

    Article  CAS  Google Scholar 

  46. Andreykiv A, Janssen D, Nelissen RG, Valstar ER (2012) On stabilization of loosened hip stems via cement injection into osteolytic cavities. Clin Biomech (Bristol, Avon) 27(8):807–12. https://doi.org/10.1016/j.clinbiomech.2012.04.004

    Article  CAS  Google Scholar 

  47. Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20(11–12):1135–1150. https://doi.org/10.1016/0021-9290(87)90030-3

    Article  CAS  Google Scholar 

  48. Chennimalai Kumar N, Dantzig JA, Jasiuk IM, Robling AG, Turner CH (2010) Numerical modeling of long bone adaptation due to mechanical loading: correlation with experiments. Ann Biomed Eng 38(3):594–604. https://doi.org/10.1007/s10439-009-9861-4

    Article  Google Scholar 

  49. Avval PT, Samiezadeh S, Bougherara H (2016) Long-term response of femoral density to hip implant and bone fracture plate: computational study using a mechano-biochemical model. Med Eng Phys 38(2):171–80. https://doi.org/10.1016/j.medengphy.2015.11.013

    Article  Google Scholar 

  50. Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2008) A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J Theor Biol 252(2):230–46. https://doi.org/10.1016/j.jtbi.2008.01.030

    Article  Google Scholar 

  51. Mukherjee K, Gupta S (2017) Mechanobiological simulations of peri-acetabular bone ingrowth: a comparative analysis of cell-phenotype specific and phenomenological algorithms. Med Biol Eng Comput 55(3):449–465. https://doi.org/10.1007/s11517-016-1528-3

    Article  Google Scholar 

  52. Andreykiv A, van Keulen F, Prendergast PJ (2008) Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech Model Mechanobiol 7(6):443–61. https://doi.org/10.1007/s10237-007-0108-8

    Article  CAS  Google Scholar 

  53. Gómez-Benito MJ, García-Aznar JM, Kuiper JH, Doblaré M (2005) Influence of fracture gap size on the pattern of long bone healing: a computational study. J Theor Biol 235(1):105–19. https://doi.org/10.1016/j.jtbi.2004.12.023

    Article  Google Scholar 

  54. Ambard D, Swider P (2006) A predictive mechano-biological model of the bone-implant healing. Eur J Mech A/Solids 25(6):927–37. https://doi.org/10.1016/j.euromechsol.2006.02.006

    Article  Google Scholar 

  55. Ghosh R, Chanda S, Chakraborty D (2022) Application of finite element analysis to tissue differentiation and bone remodelling approaches and their use in design optimization of orthopaedic implants: a review. Int J Numer Method Biomed Eng 38(10). https://doi.org/10.1002/cnm.3637

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Agartala Government Medical College, Agartala, India for providing with the CT scan data set. The authors would also like to acknowledge the computational facilities available at the Composite Structures and Fracture Mechanics Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, India, which has helped to carry out the research study. The study was partially funded by SPARC, MHRD, Government of India (Project ID: SPARC/P705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souptick Chanda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, R., Hazra, A., Chanda, S. et al. Computational assessment of growth of connective tissues around textured hip stem subjected to daily activities after THA. Med Biol Eng Comput 61, 525–540 (2023). https://doi.org/10.1007/s11517-022-02729-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02729-3

Keywords

Navigation