Skip to main content
Log in

Effective 2-D cursor control system using hybrid SSVEP + P300 visual brain computer interface

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A cursor control system based on brain-computer interface (BCI) provides efficient computer access. These systems operate without any muscular activity from the user. Conventional BCI-based cursor control systems have several limitations. Therefore, hybrid SSVEP + P300 visual BCI (VBCI)-based cursor control is needed to overcome these limitations. This paper explores the feasibility of using noninvasive hybrid SSVEP + P300 VBCI for cursor control as a universal form of computer access. The proposed cursor control system has a graphical user interface (GUI) design that simultaneously evokes both SSVEP and P300 signals in the human cortex. The performance metrics of the proposed system are compared with conventional SSVEP VBCI and P300 VBCI-based cursor control systems. The proposed hybrid SSVEP + P300 BCI-based cursor control system achieves a maximum accuracy of 97.51% with a 27.15 bit/min information transfer rate (ITR). The results proved that the proposed system performed more efficiently than other systems. The proposed system was tested in a noisy environment and found to be suitable for real-world applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bi L et al (2014)“A speed and direction based coursor control system with P300 and SSVEP.” Elsevier J Biomed Signal Process Control 14(126–133). https://doi.org/10.1016/j.bspc.2014.07.009.

  2. Anson D et al (2003) “A comparison of head pointer technologies”, RESNA 26th International Annual Conference Technology & Disability: Research, Design, Practice & Policy, Atlanta, Georgia.

  3. Dutt-Mazumder A, Huggins JE (2020) Performance comparison of a non-invasive P300-based BCI mouse to a head-mouse for people with SCI. Brain-Comput Interfaces. https://doi.org/10.1080/2326263X.2020.1716532

    Article  Google Scholar 

  4. Fernando L et al (2012) Brain computer interface, a Review. Sensors 12:1211–1279. https://doi.org/10.3390/s120201211

    Article  Google Scholar 

  5. Gao S, Wang Y, Gao X, Hong B (2014) Visual and auditory brain–computer interfaces. IEEE Trans Biomed Eng 61(5):1436–1447. https://doi.org/10.1109/TBME.2014.2300164

    Article  PubMed  Google Scholar 

  6. Duszyk A et al (2014) Towards an optimization of stimulus parameters for brain-computer interfaces based on steady state visual evoked potentials. PLoS One 9(11). https://doi.org/10.1371/journal.pone.0112099.

  7. Singla R et al (2018) Hybrid brain–computer interface paradigm—a study. Biomed Eng: Appl Basis Commun 30(3). https://doi.org/10.4015/S1016237218500229.

  8. Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA 101(51):17849–17854. https://doi.org/10.1073/pnas.0403504101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fabiani GE, McFarland DJ, Wolpaw JR, Pfurtscheller G (2004) Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Trans Neural Syst Rehabil Eng 12(3):331–338. https://doi.org/10.1109/TNSRE.2004.834627

    Article  PubMed  Google Scholar 

  10. McFarland DJ, Wolpaw JR (2005) Sensorimotor rhythm-based braincomputer interface (BCI): feature selection by regression improves performance. IEEE Trans Neural Syst Rehabil Eng 13(3):372–379. https://doi.org/10.1109/TNSRE.2005.848627

    Article  PubMed  Google Scholar 

  11. Li Y et al (2010) An EEG-based BCI system for 2-D cursor control by combining Mu/beta rhythm and P300 potential. IEEE Trans Biomed Eng 57(10):2495–2505. https://doi.org/10.1109/TBME.2010.2055564

    Article  PubMed  Google Scholar 

  12. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(13):164–171. https://doi.org/10.1038/nature04970

    Article  CAS  PubMed  Google Scholar 

  13. Donoghue J (2002) Connecting cortex to machines: recent advances in brain interfaces. Nat Neurosci 5:1085–1088. https://doi.org/10.1038/nn947

    Article  CAS  PubMed  Google Scholar 

  14. Trejo LJ, Rosipal R, Matthew B (2006) Brain-computer interfaces for 1-D and 2-D cursor control: Designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Trans Neural Syst Rehabil Eng 14(2):225–229. https://doi.org/10.1109/TNSRE.2006.875578

    Article  PubMed  Google Scholar 

  15. Martinez P, Bakardjin H, Cichocki A (2007) Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm. Comput Intell Neurosci 2007:94561-1–94561-9. https://doi.org/10.1155/2007/94561

    Article  Google Scholar 

  16. Citi L, Poli R, Cinel C, Sepulveda F (2008) P300-based BCI mouse with genetically-optimized analogue control. IEEE Trans Neural Syst Rehabil Eng 16(1):51–61. https://doi.org/10.1109/TNSRE.2007.913184

    Article  PubMed  Google Scholar 

  17. Rossion B et al (2011) Robust sensitivity to facial identity in the right human occipito-temporal cortex as revealed by steady-state visual evoked potentials. J Vis 11(2):1–21, 16, https://doi.org/10.1167/11.2.16.

  18. Gruss L et al (2012) Face-evoked steady-state visual potentials: Effects of presentation rate and face inversion. Front Human Neurosci 6. Article 316, https://doi.org/10.3389/fnhum.2012.00316.

  19. Kaufmann T et al (2011) Flashing characters with famous faces improves ERP-based brain–computer interface performance. J Neural Eng IOP Publ 8:056016. https://doi.org/10.1088/1741-2560/8/5/056016

    Article  CAS  Google Scholar 

  20. Bakardjian H et al (2011) Emotional faces boost up steady-state visual responses for brain-computer interface. NeuroReport 22(3):121–125. https://doi.org/10.1097/WNR.0b013e32834308b0

    Article  PubMed  Google Scholar 

  21. Vakli P et al (2014) The face evoked steady-state visual potentials are sensitive to the orientation, viewpoint, expression and configuration of the stimuli. Elsevier Int J Psychophysiol 94:336–350. https://doi.org/10.1016/j.ijpsycho.2014.10.008

    Article  Google Scholar 

  22. Kellicut-Jones MR, Sellers EW (2018) P300 brain-computer interface: Comparing faces to size matched non-face stimuli. Brain- Comput Interfaces 5(1):30–39. https://doi.org/10.1080/2326263X.2018.1433776

    Article  Google Scholar 

  23. Weissman B, Tanner D (2018) A strong wink between verbal and emoji-based irony: How the brain processes ironic emojis during language comprehension. PLoS One 13(8). https://doi.org/10.1371/journal.pone.0201727.

  24. Gantiva C, Sotaquirá M, Araujo A, Cuervo P (2020) Cortical processing of human and emoji faces: an ERP analysis. Behav Inf Technol 39(8):935–943. https://doi.org/10.1080/0144929X.2019.1632933

    Article  Google Scholar 

  25. Bishop CM (2007) Pattern recognition and machine learning. Springer

    Google Scholar 

  26. Tharwat A et al (2017) Linear discriminant analysis: a detailed tutorial. AI communications IOS Press; 0921–7126. https://doi.org/10.3233/AIC-170729.

  27. Colligan L, Potts HWW, Finn CT, Sinkin RA (2015) Cognitive workload changes for nurses transitioning from a legacy system with paper documentation to a commercial electronic health record. Int J Med Informatics 84(7):469–476. https://doi.org/10.1016/j.ijmedinf.2015.03.003

    Article  Google Scholar 

  28. Allison B et al (2014) A four-choice hybrid P300/SSVEP BCI for improved accuracy. Brain-Comput Interfaces 1(1):17–26. https://doi.org/10.1080/2326263X.2013.869003

    Article  Google Scholar 

  29. Wang M et al (2015) A new hybrid BCI paradigm based on P300 and SSVEP. J Neurosci Methods 244:16–25. https://doi.org/10.1016/j.jneumeth.2014.06.003

    Article  PubMed  Google Scholar 

  30. Chu L et al (2016) Influence of stimulus color on steady state visual evoked potentials. Springer J Adv Intell Syst Comput 531:499–508. https://doi.org/10.1007/978-3-319-48036-7_36

    Article  Google Scholar 

  31. Tello R et al (2015) Comparison of the influence of stimuli color on steady-state visual evoked potentials. Res Biomed Eng 31(3):218–231. https://doi.org/10.1590/2446-4740.0739

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kapgate.

Ethics declarations

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards specified by the Nagpur University research committee and also with the 1964 Helsinki declaration and all subsequent amendments or other comparable ethical standards. The Research Recognition Committee (RRC) of Nagpur University approves this research work with approval number “RTMNU/RRC/Engg./2729.”

Informed consent

Written permission was taken from each participant, as recommended by the Good Clinical Practices (GCP) accreditation.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapgate, D. Effective 2-D cursor control system using hybrid SSVEP + P300 visual brain computer interface. Med Biol Eng Comput 60, 3243–3254 (2022). https://doi.org/10.1007/s11517-022-02675-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02675-0

Keywords

Navigation