Skip to main content
Log in

Uncertainty analysis and sensitivity of scapulothoracic joint angles to kinematic model parameters

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The purposes of this study were to determine the influence of kinematic model parameter variability on scapulothoracic angle estimates, and to define which parameters of the kinematic model have the largest effect on scapulothoracic angle estimates. Nominal subject-specific kinematic models of nine participants were implemented. Fifteen parameters of the nominal models relative to the clavicle length, ellipsoid, sternoclavicular and acromioclavicular joint centers, and contact point location were altered from − 1 to 1 cm. Then, scapulothoracic angles were computed during four movements using multibody kinematic optimizations for nominal and altered models. The percentage of scapulothoracic angle variance explained by each parameter of the kinematic model was computed using Effective Algorithm for Computing Global Sensitivity Indices. When altering simultaneously the 15 parameters of the kinematic model, scapulothoracic angles varied up to 50°. For all movements and degrees of freedom, the clavicle length significantly explained the largest part of scapulothoracic angle variance (up to 25%, p < 0.01). In conclusion, kinematic model parameters need to be estimated accurately to avoid any bias in scapulothoracic angle estimates especially in a clinical context. The present sensitivity analysis may also be used as a benchmark for future works focusing on improving shoulder kinematic models.

Graphical abstract

The curves represent mean scapulothoracic angles computed with the nominal model and their variability when kinematic model parameters are altered. The colormap graphs represent the percentage of scapulothoracic angle variance explained by each parameter of the kinematic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kibler WB, Ludewig PM, McClure PW, Michener LA, Bak K, Sciascia AD (2013) Clinical implications of scapular dyskinesis in shoulder injury: the 2013 consensus statement from the ‘Scapular Summit.’ Br J Sports Med 47:877–885. https://doi.org/10.1136/bjsports-2013-092425

    Article  PubMed  Google Scholar 

  2. Kibler WB, Sciascia A, Wilkes T (2012) Scapular dyskinesis and its relation to shoulder injury. J Am Acad Orthop Surg 20:364–372. https://doi.org/10.5435/JAAOS-20-06-364

    Article  PubMed  Google Scholar 

  3. Carbone S, Moroder P, Runer A, Resch H, Gumina S, Hertel R (2016) Scapular dyskinesis after Latarjet procedure. J Shoulder Elbow Surg 25:422–427. https://doi.org/10.1016/j.jse.2015.08.001

    Article  PubMed  Google Scholar 

  4. Begon M, Andersen MS, Dumas R (2018) Multibody kinematics optimization for the estimation of upper and lower limb human joint kinematics: a systematized methodological review. J Biomech Eng 140. https://doi.org/10.1115/1.4038741

  5. Duprey S, Naaim A, Moissenet F, Begon M, Cheze L (2017) Kinematic models of the upper limb joints for multibody kinematics optimisation: an overview. J Biomech 62:87–94. https://doi.org/10.1016/j.jbiomech.2016.12.005

    Article  PubMed  Google Scholar 

  6. Seth A, Matias R, Veloso AP, Delp SL (2016) A biomechanical model of the scapulothoracic joint to accurately capture scapular kinematics during shoulder movements. PLoS ONE 11:e0141028. https://doi.org/10.1371/journal.pone.0141028

    Article  PubMed  PubMed Central  Google Scholar 

  7. Prinold JA, Bull AM (2014) Scaling and kinematics optimisation of the scapula and thorax in upper limb musculoskeletal models. J Biomech 47:2813–2819. https://doi.org/10.1016/j.jbiomech.2014.05.015

    Article  PubMed  PubMed Central  Google Scholar 

  8. Michaud B, Duprey S, Begon M (2017) Scapular kinematic reconstruction – segmental optimization, multibody optimization with openloop or closed-loop chains: which one should be preferred? Int Biomech 4:86–94. https://doi.org/10.1080/23335432.2017.1405741

    Article  PubMed Central  Google Scholar 

  9. Michaud B, Jackson M, Arndt A, Lundberg A, Begon M (2016) Determining in vivo sternoclavicular, acromioclavicular and glenohumeral joint centre locations from skin markers, CT-scans and intracortical pins: a comparison study. Med Eng Phys 38:290–296. https://doi.org/10.1016/j.medengphy.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  10. Charbonnier C, Chague S, Kolo FC, Chow JC, Ladermann A (2014) A patient-specific measurement technique to model shoulder joint kinematics. Orthop Traumatol Surg Res 100:715–719. https://doi.org/10.1016/j.otsr.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  11. Dumas R, Duprey S (2022) Subject-specific model-derived kinematics of the shoulder based on skin markers during arm abduction up to 180° - assessment of 4 gleno-humeral joint models. J Biomech 136:111061. https://doi.org/10.1016/j.jbiomech.2022.111061

  12. Hybois S, Lombart A, Puchaud P, Bascou J, Lavaste F, Pillet H et al (2017) Effects of ellipsoid parameters on scapula motion during manual wheelchair propulsion based on multibody kinematics optimization. A preliminary study. Comput Methods Biomech Biomed Engin 20:107–108. https://doi.org/10.1080/10255842.2017.1382884

    Article  CAS  PubMed  Google Scholar 

  13. El Habachi A, Duprey S, Cheze L, Dumas R (2013) Global sensitivity analysis of the kinematics obtained with a multi-body optimisation using a parallel mechanism of the shoulder. Comput Methods Biomech Biomed Engin 16(Suppl 1):61–62. https://doi.org/10.1080/10255842.2013.815907

    Article  PubMed  Google Scholar 

  14. Ludewig PM, Phadke V, Braman JP, Hassett DR, Cieminski CJ, LaPrade RF (2009) Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am 91:378–389. https://doi.org/10.2106/JBJS.G.01483

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C et al (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–part II: shoulder, elbow, wrist and hand. J Biomech 38:981–992. https://doi.org/10.1016/j.jbiomech.2004.05.042

    Article  CAS  PubMed  Google Scholar 

  16. Blache Y, Degot M, Rogowski I (2022) Does scapulothoracic contact point trajectory follow an ellipsoid surface? Comput Methods Biomech Biomed Engin 24:sup1, S1-S325. https://doi.org/10.1080/10255842.2021.1978758

  17. Pianosi F, Beven K, Freer J, Hall JW, Rougier J, Stephenson DB et al (2016) Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ Model Softw 79:214–232. https://doi.org/10.1016/j.envsoft.2016.02.008

    Article  Google Scholar 

  18. Plischke E (2010) An effective algorithm for computing global sensitivity indices (EASI). Reliab Eng Syst Saf 95:354–360. https://doi.org/10.1016/j.ress.2009.11.005

    Article  Google Scholar 

  19. Pataky TC (2010) Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J Biomech 43:1976–1982. https://doi.org/10.1016/j.jbiomech.2010.03.008

    Article  PubMed  Google Scholar 

  20. Hillen RJ, Burger BJ, Poll RG, van Dijk CN, Veeger DH (2012) The effect of experimental shortening of the clavicle on shoulder kinematics. Clin Biomech 27:777–781. https://doi.org/10.1016/j.clinbiomech.2012.05.003

    Article  Google Scholar 

  21. Su WR, Chen WL, Chen RH, Hong CK, Jou IM, Lin CL (2016) Evaluation of three-dimensional scapular kinematics and shoulder function in patients with short malunion of clavicle fractures. J Orthop Sci 21:739–744. https://doi.org/10.1016/j.jos.2016.07.005

    Article  PubMed  Google Scholar 

  22. Thorsmark Hoj A, Villa C, Christensen OM, Torp-Pedersen S, Overgaard S, Frich LH (2017) Validation of navigation ultrasound for clavicular length measurement. Ultrasound Med Biol 43:1722–1728. https://doi.org/10.1016/j.ultrasmedbio.2017.04.005

    Article  PubMed  Google Scholar 

  23. Smekal V, Deml C, Irenberger A, Niederwanger C, Lutz M, Blauth M et al (2008) Length determination in midshaft clavicle fractures: validation of measurement. J Orthop Trauma 22:458–462

    Article  Google Scholar 

  24. Stegeman SA, de Witte PB, Boonstra S, de Groot JH, Nagels J, Krijnen P et al (2016) Measurement of clavicular length and shortening after a midshaft clavicular fracture: spatial digitization versus planar roentgen photogrammetry. J Electromyogr Kinesiol 29:74–80. https://doi.org/10.1016/j.jelekin.2015.07.007

    Article  PubMed  Google Scholar 

  25. Nicholson KF, Richardson RT, Miller F, Richards JG (2017) Determining 3D scapular orientation with scapula models and biplane 2D images. Med Eng Phys 41:103–108. https://doi.org/10.1016/j.medengphy.2017.01.012

    Article  PubMed  Google Scholar 

  26. Bolsterlee B, Veeger HE, van der Helm FC (2014) Modelling clavicular and scapular kinematics: from measurement to simulation. Med Biol Eng Comput 52:283–291. https://doi.org/10.1007/s11517-013-1065-2

    Article  PubMed  Google Scholar 

  27. Reinbolt JA, Schutte JF, Fregly BJ, Koh BI, Haftka RT, George AD et al (2005) Determination of patient-specific multi-joint kinematic models through two-level optimization. J Biomech 38:621–626. https://doi.org/10.1016/j.jbiomech.2004.03.031

    Article  PubMed  Google Scholar 

  28. Andersen MS, Damsgaard M, MacWilliams B, Rasmussen J (2010) A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems. Comput Methods Biomech Biomed Engin 13:171–183. https://doi.org/10.1080/10255840903067080

    Article  CAS  PubMed  Google Scholar 

  29. Jacquelin E, Brizard D, Dumas R (2019) A screening method to analyse the sensitivity of a lower limb multibody kinematic model. Comput Methods Biomech Biomed Engin 22:925–935. https://doi.org/10.1080/10255842.2019.1604950

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Blache.

Ethics declarations

Informed consent

This research involved human participants who signed an informed consent after the study was approved by the local ethical committee.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1633 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blache, Y., Rogowski, I., Degot, M. et al. Uncertainty analysis and sensitivity of scapulothoracic joint angles to kinematic model parameters. Med Biol Eng Comput 60, 2065–2075 (2022). https://doi.org/10.1007/s11517-022-02593-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02593-1

Keywords

Navigation