Skip to main content

Advertisement

Log in

Wearables and their applications for the rehabilitation of elderly people

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Globally, there has been a change in the population pyramid with an accelerated aging process. This increase requires a greater challenge to maintain autonomy and independence. Currently, there are technologies developed with a focus on health. This is given by the development of wearables and their areas of applications. As a general context, this technology is characterized by the research field in energy generation, the development of external devices for human control and monitoring, clothing, smart textiles, and electronics. The latter are classified into three areas of application: monitoring and safety; fabrics, perception, and physical activity; and rehabilitation. A literature review is conducted to identify the state-of-the-art in these fields within the last years. The progress in monitoring systems and intelligent textiles is evidenced, being able to highlight remote feedback, materials, and wearability both at a commercial and user level. A discussion is included to address the main challenges and future trends in the application of wearables in elderly people.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. “OMS | Datos interesantes acerca del envejecimiento,” WHO, 2015, Accessed: Oct. 20, 2020. [Online]. Available: http://www.who.int/ageing/about/facts/es/.

  2. “OMS | La actividad física en los adultos mayores,” WHO, 2013.

  3. “(No Title).” https://apps.who.int/iris/bitstream/handle/10665/186466/9789240694873_spa.pdf?sequence=1 (accessed Nov. 07, 2020).

  4. “Caídas.” https://www.who.int/es/news-room/fact-sheets/detail/falls (accessed Nov. 06, 2020).

  5. “Discapacidad y salud.” https://www.who.int/es/news-room/fact-sheets/detail/disability-and-health (accessed Nov. 07, 2020).

  6. Feigin VL et al (2014) Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383(9913):245–255. https://doi.org/10.1016/S0140-6736(13)61953-4

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lavados PM et al (2007) Stroke epidemiology, prevention, and management strategies at a regional level: Latin America and the Caribbean. Lancet Neurol 6(4):362–372. https://doi.org/10.1016/S1474-4422(07)70003-0

    Article  PubMed  Google Scholar 

  8. Hankey GJ, Jamrozik K, Broadhurst RJ, Forbes S, Anderson CS (2002) Long-term disability after first-ever stroke and related prognostic factors in the Perth Community Stroke Study, 1989–1990. Stroke 33(4):1034–1040. https://doi.org/10.1161/01.STR.0000012515.66889.24

    Article  PubMed  Google Scholar 

  9. P. Chaná, M. Jiménez, V. Díaz, and C. Juri, “Mortalidad por enfermedad de Parkinson en Chile Parkinson disease mortality rates in Chile.”

  10. G. Alves, E. B. Forsaa, K. F. Pedersen, M. Dreetz Gjerstad, and J. P. Larsen, “Epidemiology of Parkinson’s disease,” in Journal of Neurology, Sep. 2008, vol. 255, no. SUPPL. 5, pp. 18–32, https://doi.org/10.1007/s00415-008-5004-3

  11. D. J. Reinkensmeyer and M. L. Boninger, “Technologies and combination therapies for enhancing movement training for people with a disability,” Journal of NeuroEngineering and Rehabilitation, vol. 9, no. 1. 2012, https://doi.org/10.1186/1743-0003-9-17.

  12. Mertz L (2020) E-textiles for health monitoring: off to a slow start, but coming soon. IEEE Pulse 11(3):20–24. https://doi.org/10.1109/MPULS.2020.2993663

    Article  PubMed  Google Scholar 

  13. “OMS | Dispositivos y tecnologías de apoyo a las personas con discapacidad,” WHO, 2016, Accessed: Nov. 09, 2020. [Online]. Available: http://www.who.int/disabilities/technology/es/.

  14. P. Alvial, “Uso de tecnología en rehabilitación.” Accessed: Nov. 09, 2020. [Online]. Available: www.redclinica.cl.

  15. Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater 28(22):4338–4372. https://doi.org/10.1002/adma.201504244

    Article  CAS  PubMed  Google Scholar 

  16. E. Torres Alonso et al., “Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles,” npj Flex. Electron., vol. 2, no. 1, 2018, https://doi.org/10.1038/s41528-018-0040-2.

  17. Y. Kim et al., “Flexible textile-based organic transistors using graphene/Ag nanoparticle electrode,” Nanomaterials, vol. 6, no. 8, Aug. 2016, https://doi.org/10.3390/nano6080147.

  18. S. Choi et al., “Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays,” Sci. Rep., vol. 7, no. 1, Dec. 2017, doi: https://doi.org/10.1038/s41598-017-06733-8.

  19. Roach DJ et al (2019) Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl Mater Interfaces 11(21):19514–19521. https://doi.org/10.1021/acsami.9b04401

    Article  CAS  PubMed  Google Scholar 

  20. Koyama S, Sakaguchi A, Ishizawa H, Yasue K, Oshiro H, Kimura H (2017) Vital sign measurement using covered FBG sensor embedded into knitted fabric for smart textile. J Fiber Sci Technol 73(11):300–308. https://doi.org/10.2115/fiberst.2017-0046

    Article  Google Scholar 

  21. E. Kańtoch (2018) “Recognition of sedentary behavior by machine learning analysis of wearable sensors during activities of daily living for telemedical assessment of cardiovascular risk,” Sensors (Switzerland), vol. 18, no. 10. https://doi.org/10.3390/s18103219.

  22. Manogaran G et al (2019) Wearable IoT smart-log patch: an edge computing-based Bayesian deep learning network system for multi access physical monitoring system. Sensors 19(13):3030. https://doi.org/10.3390/s19133030

    Article  PubMed Central  Google Scholar 

  23. Esfahani MIM, Nussbaum MA (2018) A ‘smart’ undershirt for tracking upper body motions: task classification and angle estimation. IEEE Sens J 18(18):7650–7658. https://doi.org/10.1109/JSEN.2018.2859626

    Article  Google Scholar 

  24. Gao W, Ota H, Kiriya D, Takei K, Javey A (2019) Flexible electronics toward wearable sensing. Acc Chem Res 52(3):523–533. https://doi.org/10.1021/acs.accounts.8b00500

    Article  CAS  PubMed  Google Scholar 

  25. Lee Y et al (2017) Biomechanical design of a novel flexible exoskeleton for lower extremities. IEEE/ASME Trans Mechatronics 22(5):2058–2069. https://doi.org/10.1109/TMECH.2017.2718999

    Article  Google Scholar 

  26. Hegde N et al (2018) The pediatric SmartShoe: wearable sensor system for ambulatory monitoring of physical activity and gait. IEEE Trans Neural Syst Rehabil Eng 26(2):477–486. https://doi.org/10.1109/TNSRE.2017.2786269

    Article  PubMed  Google Scholar 

  27. Yang L et al (Jul. 2018) Towards smart work clothing for automatic risk assessment of physical workload. IEEE Access 6:40059–40072. https://doi.org/10.1109/ACCESS.2018.2855719

    Article  Google Scholar 

  28. Patel SV, Cemalovic S, Tolley WK, Hobson ST, Anderson R, Fruhberger B (2018) Implications of thermal annealing on the benzene vapor sensing behavior of PEVA-graphene nanocomposite threads. ACS Sensors 3(3):640–647. https://doi.org/10.1021/acssensors.7b00912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y. J. Hong et al., “Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/post-exercise glucose levels,” Adv. Funct. Mater., vol. 28, no. 47, Nov. 2018, doi: https://doi.org/10.1002/adfm.201805754.

  30. Li S et al (2015) Cloth-based power shirt for wearable energy harvesting and clothes ornamentation. ACS Appl Mater Interfaces 7(27):14912–14916. https://doi.org/10.1021/acsami.5b03680

    Article  CAS  PubMed  Google Scholar 

  31. A. Dabrowska and A. Greszta, “Analysis of the possibility of using energy harvesters to power wearable electronics in clothing,” Advances in Materials Science and Engineering, vol. 2019. Hindawi Limited, 2019, doi: https://doi.org/10.1155/2019/9057293.

  32. W. Gong et al., “Continuous and scalable manufacture of amphibious energy yarns and textiles,” Nat. Commun., vol. 10, no. 1, Dec. 2019, doi: https://doi.org/10.1038/s41467-019-08846-2.

  33. H. Y. Chung, Y. L. Chung, and C. Y. Liang, “Design and implementation of a novel system for correcting posture through the use of a wearable necklace sensor,” JMIR mHealth uHealth, vol. 7, no. 5, May 2019, doi: https://doi.org/10.2196/12293.

  34. S. J. Park and C. H. Park, “Suit-type wearable robot powered by shape-memory-alloy-based fabric muscle,” Sci. Rep., vol. 9, no. 1, Dec. 2019, doi: https://doi.org/10.1038/s41598-019-45722-x.

  35. Tong JK, Huang X, Boriskina SV, Loomis J, Xu Y, Chen G (Jun. 2015) Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2(6):769–778. https://doi.org/10.1021/acsphotonics.5b00140

    Article  CAS  Google Scholar 

  36. Han P, Zhang X, Qiao J (2016) Intrinsically conductive polymer fibers from thermoplastic trans-1,4-polyisoprene. Langmuir 32(19):4904–4908. https://doi.org/10.1021/acs.langmuir.6b01333

    Article  CAS  PubMed  Google Scholar 

  37. Pu X et al (2016) Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 28(1):98–105. https://doi.org/10.1002/adma.201504403

    Article  CAS  PubMed  Google Scholar 

  38. G. Postolache, H. Carvalho, A. Catarino, and O. A. Postolache, Smart clothes for rehabilitation context: technical and technological issues, vol. 22. 2017.

  39. L. Wang, “Recognition of human activities using continuous autoencoders with wearable sensors,” Sensors (Switzerland), vol. 16, no. 2, 2016, https://doi.org/10.3390/s16020189.

  40. Z. Wang, Z. Yang, and T. Dong, “A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time,” Sensors (Switzerland), vol. 17, no. 2, 2017, doi: https://doi.org/10.3390/s17020341.

  41. D. Dias and J. P. S. Cunha, “Wearable health devices—vital sign monitoring, systems and technologies,” Sensors (Switzerland), vol. 18, no. 8, 2018, doi: https://doi.org/10.3390/s18082414.

  42. Priya A, Kumar A, Chauhan B (2015) A review of textile and cloth fabric wearable antennas. Int J Comput Appl 116(17):1–5. https://doi.org/10.5120/20425-2741

    Article  Google Scholar 

  43. Gonçalves C, da Silva AF, Gomes J, Simoes R (2018) Wearable e-textile technologies: a review on sensors, actuators and control elements. Inventions 3(1):1–13. https://doi.org/10.3390/inventions3010014

    Article  Google Scholar 

  44. M. Frydrysiak and L. Tesiorowski, “Health monitoring system for protecting elderly people,” in 2016 International Multidisciplinary Conference on Computer and Energy Science, SpliTech 2016, Aug. 2016, pp. 1–6, doi: https://doi.org/10.1109/SpliTech.2016.7555935.

  45. K. S. Patel and S. S. Patel, “Method and apparatus for safety using inflated bags through smart sports clothes,” in Proceedings - 2nd International Conference on Computing, Communication, Control and Automation, ICCUBEA 2016, Feb. 2017, pp. 1–4, doi: https://doi.org/10.1109/ICCUBEA.2016.7860135.

  46. K. Nesenbergs and L. Selavo, “Smart textiles for wearable sensor networks: review and early lessons,” in 2015 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2015 - Proceedings, Jun. 2015, pp. 402–406, doi: https://doi.org/10.1109/MeMeA.2015.7145236.

  47. L. Gonzales et al., “Textile sensor system for electrocardiogram monitoring,” in 2015 IEEE Virtual Conference on Applications of Commercial Sensors (VCACS), Mar. 2015, pp. 1–4, doi: https://doi.org/10.1109/VCACS.2015.7439568.

  48. A. C. M. Fong, B. Fong, and G. Hong, “Short-range tracking using smart clothing sensors : AA case study of using low power wireless sensors for pateints tracking in a nursing home setting,” in 2018 IEEE 3rd International Conference on Communication and Information Systems, ICCIS 2018, Feb. 2019, pp. 169–172, doi: https://doi.org/10.1109/ICOMIS.2018.8645003.

  49. Guo Y et al (2018) All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 48:152–160. https://doi.org/10.1016/j.nanoen.2018.03.033

    Article  CAS  Google Scholar 

  50. Fischer M, Renzler M, Ussmueller T (Jul. 2019) Development of a smart bed insert for detection of incontinence and occupation in elder care. IEEE Access 7:118498–118508. https://doi.org/10.1109/access.2019.2931041

    Article  Google Scholar 

  51. H. K. Dow, I. J. Huang, R. Rieger, K. C. Kuo, L. Y. Guo, and S. J. Pao, “A bio-sensing system-on-chip and software for smart clothes,” Mar. 2019, doi: https://doi.org/10.1109/ICCE.2019.8662101.

  52. C. C. Hsiao, R. G. Lee, S. C. Tien, Y. Y. Feng, and S. F. Huang, “Early clinical prognosis for high-risk chest pain patients using smart textiles,” Biomed. Eng. - Appl. Basis Commun., vol. 27, no. 6, Dec. 2015, doi: https://doi.org/10.4015/S101623721550057X.

  53. W. Y. Lin, H. L. Ke, W. C. Chou, P. C. Chang, T. H. Tsai, and M. Y. Lee, “Realization and technology acceptance test of a wearable cardiac health monitoring and early warning system with multi-channel MCGs and ECG,” Sensors (Switzerland), vol. 18, no. 10, Oct. 2018, doi: https://doi.org/10.3390/s18103538.

  54. R. I. W. K. H. Ohfwurfduglrjudsk, “Iru Wkh ( Oghuo \ % Dvhg Rq 6Pduw & Orwkhv,” pp. 478–482, 2018.

  55. M. Martinez-Estrada, R. Fernandez-Garcia, and I. Gil, “A wearable system to detect urine leakage based on a textile sensor.,” Oct. 2020, pp. 1–3, doi: https://doi.org/10.1109/fleps49123.2020.9239554.

  56. M. J. Rodrigues, O. Postolache, and F. Cercas, “Physiological and behavior monitoring systems for smart healthcare environments: a review,” Sensors (Switzerland), vol. 20, no. 8. MDPI AG, Apr. 02, 2020, doi: https://doi.org/10.3390/s20082186.

  57. Tian M, Lu Y, Qu L, Zhu S, Zhang X, Chen S (2019) A pillow-shaped 3D hierarchical piezoresistive pressure sensor based on conductive silver components-coated fabric and random fibers assembly. Ind Eng Chem Res 58(14):5737–5742. https://doi.org/10.1021/acs.iecr.9b00035

    Article  CAS  Google Scholar 

  58. Katayama K, Chino S, Koyama S, Ishizawa H, Fujimoto K (2020) Verification of blood pressure monitoring system using optical fiber sensor -tracing sudden blood pressure changes-. J Fiber Sci Technol 76(2):79–87. https://doi.org/10.2115/fiberst.2020-0008

    Article  Google Scholar 

  59. Lim SJ, Bae JH, Jang SJ, Lim JY, Ko JH (2018) Development of textile-based pressure sensor and its application. Fibers Polym 19(12):2622–2630. https://doi.org/10.1007/s12221-018-8813-8

    Article  Google Scholar 

  60. S. Majumder, T. Mondal, and M. J. Deen, “Wearable sensors for remote health monitoring,” Sensors (Switzerland), vol. 17, no. 1. MDPI AG, Jan. 12, 2017, doi: https://doi.org/10.3390/s17010130.

  61. Y. H. Lu and C. C. Lin, “The study of smart elderly care system,” in 8th International Conference on Information Science and Technology, ICIST 2018, Aug. 2018, pp. 483–486, doi: https://doi.org/10.1109/ICIST.2018.8426110.

  62. C. C. Lin, C. Y. Yang, Z. Zhou, and S. Wu, “Intelligent health monitoring system based on smart clothing,” Int. J. Distrib. Sens. Networks, vol. 14, no. 8, Aug. 2018, doi: https://doi.org/10.1177/1550147718794318.

  63. Takamatsu S, Yamashita T, Murakami T, Masuda A, Itoh T (2018) Meter-scale flexible touch sensor using projection capacitive measurement technique and fabric electrode for human position detection. Sensors Mater 30(12):3039–3051. https://doi.org/10.18494/SAM.2018.2173

    Article  Google Scholar 

  64. Hu X et al (2020) Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 14(1):559–567. https://doi.org/10.1021/acsnano.9b06899

    Article  CAS  PubMed  Google Scholar 

  65. Y. Zhang, M. Tian, L. Wang, H. Zhao, and L. Qu, “Flexible Janus textile-based electroosmotic pump for large-area unidirectional positive water transport,” Adv. Mater. Interfaces, vol. 7, no. 13, Jul. 2020, doi: https://doi.org/10.1002/admi.201902133.

  66. F. Zeng, P. Siriaraya, D. Choi, and N. Kuwahara, “Textile EEG cap using dry-comb electrodes for emotion detection of elderly people,” 2020. Accessed: Oct. 27, 2020. [Online]. Available: www.ijacsa.thesai.org.

  67. I. Hrga, “Wearable technologies: between fashion, art, performance, and science (fiction),” Tekstilec, vol. 62, no. 2. University of Ljubljana, pp. 124–136, 2019, doi: https://doi.org/10.14502/Tekstilec2019.62.124-136.

  68. A. Albrecht et al., “Over-stretching tolerant conductors on rubber films by inkjet-printing silver nanoparticles for wearables,” Polymers (Basel)., vol. 10, no. 12, 2018, doi: https://doi.org/10.3390/POLYM10121413.

  69. X. Tao, T. H. Huang, C. L. Shen, Y. C. Ko, G. T. Jou, and V. Koncar, “Bluetooth low energy-based washable wearable activity motion and electrocardiogram textronic monitoring and communicating system,” Adv. Mater. Technol., vol. 3, no. 10, Oct. 2018, doi: https://doi.org/10.1002/admt.201700309.

  70. S. Shahidi and B. Moazzenchi, “Carbon nanotube and its applications in textile industry–a review,” Journal of the Textile Institute, vol. 109, no. 12. Taylor and Francis Ltd., pp. 1653–1666, Dec. 02, 2018, doi: https://doi.org/10.1080/00405000.2018.1437114.

  71. T. Chittenden, “Skin in the game: the use of sensing smart fabrics in tennis costume as a means of analyzing performance,” Fash. Text., vol. 4, no. 1, Dec. 2017, doi: https://doi.org/10.1186/s40691-017-0107-z.

  72. Leśnikowski J (2016) Research on poppers used as electrical connectors in high speed textile transmission lines. Autex Res J 16(4):228–235. https://doi.org/10.1515/aut-2016-0025

    Article  Google Scholar 

  73. Dai M, Xiao X, Chen X, Lin H, Wu W, Chen S (Dec. 2016) A low-power and miniaturized electrocardiograph data collection system with smart textile electrodes for monitoring of cardiac function. Australas Phys Eng Sci Med 39(4):1029–1040. https://doi.org/10.1007/s13246-016-0483-5

    Article  PubMed  Google Scholar 

  74. C. Schaude and G. J. Mohr, “Indicator washcloth for detecting alkaline washing solutions to prevent dermatitis patients and babies from skin irritation,” Fash. Text., vol. 4, no. 1, 2017, https://doi.org/10.1186/s40691-017-0092-2.

  75. C. Zeng, H. Wang, H. Zhou, and T. Lin, “Heat transfer in directional water transport fabrics,” Fibers, vol. 4, no. 4, 2016, https://doi.org/10.3390/fib4040026.

  76. McCann J (2016) Sportswear design for the active ageing. Fash Pract 8(2):234–256. https://doi.org/10.1080/17569370.2016.1215118

    Article  Google Scholar 

  77. Y. C. Huang, J. H. Chen, G. Y. Chen, and K. F. Tung, “Smart sportswear design for down syndrome patients,” in Advances in Intelligent Systems and Computing, 2020, vol. 1202 AISC, pp. 847–855, https://doi.org/10.1007/978-3-030-51194-4_109.

  78. P. C. Huang, C. C. Lin, H. J. Hsieh, W. C. Chen, and H. H. Chiang, “Development of health care system based on smart clothes,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020, vol. 12193 LNCS, pp. 78–88, https://doi.org/10.1007/978-3-030-49913-6_7.

  79. S. Uran and J. Geršak, “Smart clothing to increase safety of people with dementia,” in IOP Conference Series: Materials Science and Engineering, Dec. 2018, vol. 460, no. 1, https://doi.org/10.1088/1757-899X/460/1/012047.

  80. Lou CW, Shiu BC, Lin JH, Chang YJ (2015) Development and characteristic study of woven fabrics for intelligent diapers. Technol Heal Care 23(5):675–684. https://doi.org/10.3233/THC-151008

    Article  Google Scholar 

  81. Oks A, Katashev A, Eizentals P, Pavare Z, Balcuna D (2019) Application of smart sock system for testing of shoe cushioning properties. IFMBE Proceedings 68(3):861–864. https://doi.org/10.1007/978-981-10-9023-3_155

    Article  Google Scholar 

  82. J. Jia et al., “Conductive thread-based textile sensor for continuous perspiration level monitoring,” Sensors (Switzerland), vol. 18, no. 11, Nov. 2018, doi: https://doi.org/10.3390/s18113775.

  83. S. Palamutcu and I. Goren, “Functional textile preferences of elderly people,” Mediterr. J. Soc. Sci., vol. 6, no. 2S5, pp. 279–285, 2015, https://doi.org/10.5901/mjss.2015.v6n2s5p279

  84. Havelka A, Tichý M, Soukup R, Nagy L (2018) Application of hybrid heating textile structures in clothing for seniors. Vlakna a Text 25(4):26–30

    Google Scholar 

  85. M. Normann, T. Grethe, K. Zöll, A. Ehrmann, and A. Schwarz-Pfeiffer, “Development of 2D and 3D structured textile batteries processing conductive material with Tailored Fiber Placement (TFP),” IOP Conf. Ser. Mater. Sci. Eng., vol. 254, no. 7, 2017, https://doi.org/10.1088/1757-899X/254/7/072016

  86. R. Atakan et al., “Design of an electronic chest-band,” IOP Conf. Ser. Mater. Sci. Eng., vol. 254, no. 7, 2017, https://doi.org/10.1088/1757-899X/254/7/072002.

  87. E. F. Waldhör, B. Greinke, P. Vierne, K. Bredies, and P. Seidler, “E-textile production of wearable ambient notification devices,” DIS 2017 Companion - Proc. 2017 ACM Conf. Des. Interact. Syst., pp. 309–312, 2017, doi: https://doi.org/10.1145/3064857.3079181.

  88. M. Raad et al., “An IOT based wearable smart glove for remote monitoring of rheumatoid arthritis patients,” in BIOSIGNALS 2019 - 12th International Conference on Bio-Inspired Systems and Signal Processing, Proceedings; Part of 12th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2019, 2019, pp. 224–228, https://doi.org/10.5220/0007573302240228.

  89. V. Viegas, J. M. Dias Pereira, O. Postolache, and P. S. Girão, “Application of force and inertial sensors to monitor gait on legacy walkers,” Acta IMEKO, vol. 7, no. 4, pp. 33–41, 2018, https://doi.org/10.21014/acta_imeko.v7i4.575.

  90. Ogasawara T, Matsunaga K, Ito H, Mukaino M (2018) Application for rehabilitation medicine using wearable textile ‘hitoe.’ NTT Tech Rev 16(9):6–12

    Google Scholar 

  91. C. Hayashi, Y. Enokibori, and K. Mase, “Harmless line-oriented sensing point reduction for non-categorical sitting posture score,” UbiComp/ISWC 2017 - Adjun. Proc. 2017 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. Proc. 2017 ACM Int. Symp. Wearable Comput., pp. 61–64, 2017, doi: https://doi.org/10.1145/3123024.3123083.

  92. M. C. Farrell and C. A. Shibao, “Morbidity and mortality in orthostatic hypotension,” Autonomic Neuroscience: Basic and Clinical, vol. 229. Elsevier B.V., Dec. 01, 2020, doi: https://doi.org/10.1016/j.autneu.2020.102717.

  93. R. Granberry, J. Abel, and B. Holschuh, “Active knit compression stockings for the treatment of orthostatic hypotension,” Proc. - Int. Symp. Wearable Comput. ISWC, vol. Part F1305, pp. 186–191, 2017, doi: https://doi.org/10.1145/3123021.3123065.

  94. M. J. Magalhães, S. T. De Magalhães, and K. Revett, “Enhancing elderly mobility through IoT using textiles: a review,” Smart City 360 2016 - 2nd EAI Int. Summit, pp. 1–10, 2017, doi: https://doi.org/10.4108/eai.14-2-2017.152284.

  95. K. Guan, M. Shao, and S. Wu, “A remote health monitoring system for the elderly based on smart home gateway,” J. Healthc. Eng., vol. 2017, 2017, doi: https://doi.org/10.1155/2017/5843504.

Download references

Acknowledgements

The authors thank the support of the National Doctorate Scholarship ANID Chile, the year 2019–2022 folio 21190910.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria P. Bravo.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, V.P., Muñoz, J.A. Wearables and their applications for the rehabilitation of elderly people. Med Biol Eng Comput 60, 1239–1252 (2022). https://doi.org/10.1007/s11517-022-02544-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02544-w

Keywords

Navigation