Skip to main content
Log in

Symmetry-based representation for registration of multimodal images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We propose a new two-dimensional structural representation method for registration of multimodal images by using the local structural symmetry of images, which is similar at different modalities. The symmetry is measured in various orientations and the best is mapped and used for the representation image. The optimum performance is obtained when using only two different orientations, which is called binary dominant symmetry representation (BDSR). This representation is highly robust to noise and intensity non-uniformity. We also propose a new objective function based on L2 distance with low sensitivity to the overlapping region. Then, five different meta-heuristic algorithms are comparatively applied. Two of them have been used for the first time on image registration. BDSR remarkably outperforms the previous successful representations, such as entropy images, self-similarity context, and modality-independent local binary pattern, as well as mutual information-based registration, in terms of success rate, runtime, convergence error, and representation construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wells WM III, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1(1):35–51

    Article  Google Scholar 

  2. Andronache A, von Siebenthal M, Székely G, Cattin P (2008) Non-rigid registration of multi-modal images using both mutual information and cross-correlation. Med Image Anal 12(1):3–15

    Article  CAS  Google Scholar 

  3. Studholme C, Hill DL, Hawkes DJ (1999) An overlap invariant entropy measure of 3D medical image alignment. Pattern Recogn 32(1):71–86

    Article  Google Scholar 

  4. Pluim JPW, Maintz JBA, Viergever MA (2000) Image registration by maximization of combined mutual information and gradient information. IEEE Trans Med Imaging 19(8):809–814

    Article  CAS  Google Scholar 

  5. Liao YL, Sun YN, Guo WY, Chou YH, Hsieh JC, Wu YT (2011) A hybrid strategy to integrate surface-based and mutual-information-based methods for co-registering brain SPECT and MR images. Med Biol Eng Compu 49(6):671–685

    Article  Google Scholar 

  6. Wu G, Kim M, Wang Q, Munsell BC, Shen D (2015) Scalable high-performance image registration framework by unsupervised deep feature representations learning. IEEE Trans Biomed Eng 63(7):1505–1516

    Article  Google Scholar 

  7. Wachinger C, Navab N (2012) Entropy and Laplacian images: structural representations for multi-modal registration. Med Image Anal 16(1):1–17

    Article  Google Scholar 

  8. Razlighi QR, Kehtarnavaz N, Yousefi S (2013) Evaluating similarity measures for brain image registration. J Vis Commun Image Represent 24(7):977–987

    Article  CAS  Google Scholar 

  9. Fuerst B, Wein W, Müller M, Navab N (2014) Automatic ultrasound–MRI registration for neurosurgery using the 2D and 3D LC2 Metric. Med Image Anal 18(8):1312–1319

    Article  Google Scholar 

  10. Chen Z, Xu Z, Gui Q, Yang X, Cheng Q, Hou W, Ding M (2020) Self-learning based medical image representation for rigid real-time and multimodal slice-to-volume registration. Inf Sci 541:502–515

    Article  Google Scholar 

  11. Zhu X, Ding M, Huang T, Jin X, Zhang X (2018) PCANet-based structural representation for nonrigid multimodal medical image registration. Sensors 18(5):1477

    Article  Google Scholar 

  12. Heinrich MP, Jenkinson M, Bhushan M, Matin T, Gleeson FV, Brady M, Schnabel JA (2012) MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. Med Image Anal 16(7):1423–1435

    Article  Google Scholar 

  13. Heinrich MP, Jenkinson M, Papież BW, Brady M, Schnabel JA (2013) Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: International conference on medical image computing and computer-assisted intervention (pp 187–194). Springer, Berlin, Heidelberg

  14. Jiang D, Shi Y, Yao D, Wang M, Song Z (2016) miLBP: a robust and fast modality-independent 3D LBP for multimodal deformable registration. Int J Comput Assist Radiol Surg 11(6):997–1005

    Article  Google Scholar 

  15. Wong A, Orchard J (2009) Robust multimodal registration using local phase-coherence representations. J Signal Process Syst 54(1–3):89

    Article  Google Scholar 

  16. Li Z, Mahapatra D, Tielbeek JA, Stoker J, van Vliet LJ, Vos FM (2015) Image registration based on autocorrelation of local structure. IEEE Trans Med Imaging 35(1):63–75

    Article  Google Scholar 

  17. Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imaging 32(7):1153

    Article  Google Scholar 

  18. Chen Y, He F, Li H, Zhang D, Wu Y (2020) A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration. Appl Soft Comput 93:106335

    Article  Google Scholar 

  19. Liang J, Liu X, Huang K, Li X, Wang D, Wang X (2013) Automatic registration of multisensor images using an integrated spatial and mutual information (SMI) metric. IEEE Trans Geosci Remote Sens 52(1):603–615

    Article  Google Scholar 

  20. Li T, Pan Q, Gao L, Li P (2017) Differential evolution algorithm-based range image registration for free-form surface parts quality inspection. Swarm Evol Comput 36:106–123

    Article  Google Scholar 

  21. Kovesi P (1997) Symmetry and asymmetry from local phase. In Tenth Australian joint conference on artificial intelligence (vol 190, pp 2–4). Citeseer

  22. Kovesi P (1999) Image features from phase congruency. Videre: J Comput Vis Res 1(3):1–26

    Google Scholar 

  23. Johnson KA, Becker JA (1999) The whole brain, Atlas, Harvard Medical School. https://www.med.harvard.edu/aanlib. Accessed Sept. 2, 2021 

  24. McConnell Brain Imaging Center Montreal Neurological Institute, McGill University, Montreal, QC ,Canada. BrainWeb. https://brainweb.bic.mni.mcgill.ca/brainweb/. Accessed Sept. 24, 2020 

  25. Eberhart R, Kennedy J (1995) Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (vol 4, pp 1942–1948)

  26. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  Google Scholar 

  27. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154

    Article  Google Scholar 

  28. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  29. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  CAS  Google Scholar 

Download references

Funding

This work received funding support from Babol Noshirvani University of Technology through grant program no. BNUT/389059/400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Aghagolzadeh.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, M., Aghagolzadeh, A. & Ezoji, M. Symmetry-based representation for registration of multimodal images. Med Biol Eng Comput 60, 1015–1032 (2022). https://doi.org/10.1007/s11517-022-02515-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02515-1

Keywords

Navigation