Skip to main content
Log in

Investigation of the different parameters contributing to bubble sticking inside physiological bifurcations

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Gas embolotherapy (GE) is a developing medical method which can be utilized either as an autonomous therapeutic method to treat vascularized solid tumors, or it can be combined with other medical procedures—such as high-intensity focused ultrasound—to improve their efficiency. This paper is dedicated to investigating the different parameters which influence bubble lodging inside human vasculature via 2D-modeling of bubble dynamics in arteries’ and arterioles’ bifurcations which are potential sticking positions. Values used in the simulations are in accordance with the non-dimensional physiological numbers. It is found out that inlet pressure plays a decisive role in bubble lodging; the lower the value, the higher the possibility of bubble sticking. On the other hand, gravity has a counteracting effect on bubble lodging in arteries, but not on arterioles. The initial length of the bubble is not a determining factor in sticking behavior, even though it affects the flow rate behavior. Surface tension, another critical factor, has a semi-linear impact on bubble resisting power; lowering the surface tension will reduce bubble resistance to the flow, diminishing the possibility of bubble lodging. Finally, it is shown that lower values for the static contact angle impose higher resistance to the flow.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kripfgans OD et al (2000) Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 26(7):1177–1189

    Article  CAS  Google Scholar 

  2. Samuel S et al (2012) In vivo microscopy of targeted vessel occlusion employing acoustic droplet vaporization. Microcirculation 19(6):501–509

    Article  Google Scholar 

  3. Calderón AJ et al (2006) Microfluidic model of bubble lodging in microvessel bifurcations. Appl Phys Lett 89(24):244103

    Article  Google Scholar 

  4. Apfel RE (1998) Activatable infusable dispersions containing drops of a superheated liquid for methods of therapy and diagnosis. Google Patents

    Google Scholar 

  5. Shpak O et al (2014) Acoustic droplet vaporization is initiated by superharmonic focusing. Proc Natl Acad Sci 111(5):1697–1702

    Article  CAS  Google Scholar 

  6. Kripfgans OD et al (2004) On the acoustic vaporization of micrometer-sized droplets. J Acoust Soc Am 116(1):272–281

    Article  CAS  Google Scholar 

  7. Li DS et al (2014) Initial nucleation site formation due to acoustic droplet vaporization. Appl Phys Lett 104(6):063703

    Article  Google Scholar 

  8. Kripfgans OD et al (2002) In vivo droplet vaporization for occlusion therapy and phase aberration correction. IEEE Trans Ultrason Ferroelectr Freq Control 49(6):726–738

    Article  Google Scholar 

  9. Kripfgans OD et al (2005) Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study. IEEE Trans Ultrason Ferroelectr Freq Control 52(7):1101–1110

    Article  Google Scholar 

  10. Harmon JS et al (2019) Minimally invasive gas embolization using acoustic droplet vaporization in a rodent model of hepatocellular carcinoma. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  11. Harmon JS et al (2018) Gas embolization in a rodent model of hepatocellular carcinoma using acoustic droplet vaporization. in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE

  12. Feng Y et al (2018) Occlusion and rupture of ex vivo capillary bifurcation due to acoustic droplet vaporization. Appl Phys Lett 112(23):233701

    Article  Google Scholar 

  13. Bapat PS, Pandit AB (2008) Thermodynamic and kinetic considerations of nucleation and stabilization of acoustic cavitation bubbles in water. Ultrason Sonochem 15(1):65–77

    Article  CAS  Google Scholar 

  14. Pitt WG et al (2014) Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model. Ultrason Sonochem 21(2):879–891

    Article  CAS  Google Scholar 

  15. Guédra M, Coulouvrat F (2015) A model for acoustic vaporization of encapsulated droplets. J Acoust Soc Am 138(6):3656–3667

    Article  Google Scholar 

  16. Qamar A et al (2010) Dynamics of acoustic droplet vaporization in gas embolotherapy. Appl Phys Lett 96(14):143702

    Article  Google Scholar 

  17. Qamar A et al (2012) Evolution of acoustically vaporized microdroplets in gas embolotherapy. J Biomech Eng 134(3):031010. https://doi.org/10.1115/1.4005980

  18. Shpak O et al (2013) Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets. J Acoust Soc Am 134(2):1610–1621

    Article  CAS  Google Scholar 

  19. Wong ZZ et al (2011) Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging. Soft Matter 7(8):4009–4016

    Article  CAS  Google Scholar 

  20. Lo AH et al (2007) Acoustic droplet vaporization threshold: effects of pulse duration and contrast agent. IEEE Trans Ultrason Ferroelectr Freq Control 54(5):933–946

    Article  Google Scholar 

  21. Salajeghe R, Saidi MS (2018) A linear array transducer design for the purpose of gas embolotherapy, in ISME.: Semnan, Iran

  22. Harmon JS, Kabinejadian F, Bull JL (2019) Ultrasound-guided gas embolization using a single linear array transducer. in 2019 IEEE International Ultrasonics Symposium (IUS). IEEE

  23. Melich R et al (2020) Microfluidic preparation of various perfluorocarbon nanodroplets: characterization and determination of acoustic droplet vaporization (ADV) threshold. Int J Pharm 587:119651

    Article  CAS  Google Scholar 

  24. Lajoinie G, Segers T, Versluis M (2021) High-frequency acoustic droplet vaporization is initiated by resonance. Phys Rev Lett 126(3):034501

    Article  CAS  Google Scholar 

  25. Pinho N et al (2019) Correlation between geometric parameters of the left coronary artery and hemodynamic descriptors of atherosclerosis: FSI and statistical study. Med Biol Eng Compu 57(3):715–729

    Article  CAS  Google Scholar 

  26. Athanasiou LS, Nezami FR, Edelman ER (2019) Hemodynamic consequences of a multilayer flow modulator in aortic dissection. Med Biol Eng Compu 57(9):1861–1874

    Article  Google Scholar 

  27. Wong KK, Wu J, Liu G, Huang W, Ghista DN (2020) Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic param`eters causing atherosclerosis. Med Biol Eng Comput 58:1831–1843

  28. Calderón AJ, Fowlkes JB, Bull JL (2005) Bubble splitting in bifurcating tubes: a model study of cardiovascular gas emboli transport. J Appl Physiol 99(2):479–487

    Article  Google Scholar 

  29. Eshpuniyani B, Fowlkes JB, Bull JL (2005) A bench top experimental model of bubble transport in multiple arteriole bifurcations. Int J Heat Fluid Flow 26(6):865–872

    Article  CAS  Google Scholar 

  30. Ye T, Bull JL (2004) Direct numerical simulations of micro-bubble expansion in gas embolotherapy. J Biomech Eng 126(6):745–759

    Article  Google Scholar 

  31. Ye T, Bull JL (2006) "Microbubble expansion in a flexible tube." p. 554–563.

  32. Eshpuniyani B, Bull J (2005) A boundary element model of vascular gas bubble sticking and sliding. In: Ursino M, Brebbia CA, Pontrelli G, Magosso E (eds) Modelling in medicine and biology VI. WIT Press, Southampton, pp 331–339

    Chapter  Google Scholar 

  33. Qamar A et al (2017) Small-bubble transport and splitting dynamics in a symmetric bifurcation. Comput Methods Biomech Biomed Engin 20(11):1182–1194

    Article  Google Scholar 

  34. Nagargoje MS, Gupta R. Numerical simulation of bubble transport and splitting dynamics for varying bifurcation angle. in 14th International Conference on CFD in 6 Oil & Gas, Metallurgical and Process Industries SINTEF, Trondheim, Norway, October 12–14, 2020. 2020. SINTEF Academic Press

  35. Damian SM (2012) Description and utilization of interFoam multiphase solver. International Center for Computational Methods in Engineering.

  36. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354

    Article  CAS  Google Scholar 

  37. Li DS (2014) Bubble Dynamics and Acoustic Droplet Vaporization in Gas Embolotherapy (Doctoral dissertation)

  38. Zhang Z, Kleinstreuer C, Kim C (2001) Flow structure and particle transport in a triple bifurcation airway model. J Fluids Eng 123(2):320–330

    Article  CAS  Google Scholar 

  39. Van Leer B (1974) Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J Comput Phys 14(4):361–370

    Article  Google Scholar 

  40. Winslow RM (2005) Blood substitutes. Elsevier

    Google Scholar 

  41. Chernyshev VS, Skliar M (2014) Surface tension of water in the presence of perfluorocarbon vapors. Soft Matter 10(12):1937–1943

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Said Saidi.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salajeghe, R., Saidi, M.S. Investigation of the different parameters contributing to bubble sticking inside physiological bifurcations. Med Biol Eng Comput 60, 599–618 (2022). https://doi.org/10.1007/s11517-021-02485-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02485-w

Keywords

Navigation